On the Complexity Landscape of the Domination Chain

被引:7
|
作者
Bazgan, Cristina [1 ,2 ]
Brankovic, Ljiljana [3 ]
Casel, Katrin [4 ]
Fernau, Henning [4 ]
机构
[1] Inst Univ France, Paris, France
[2] Univ Paris 09, PSL, LAMSADE UMR CNRS 7243, F-75775 Paris 16, France
[3] Univ Newcastle, Callaghan, NSW 2308, Australia
[4] Univ Trier, Fachbereich 4, Informat Wissensch, D-54286 Trier, Germany
来源
ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016 | 2016年 / 9602卷
关键词
VERTEX COVER; UPPER-BOUNDS; APPROXIMATION; PARAMETERS; INDEPENDENCE; ALGORITHMS; APPROXIMABILITY; IRREDUNDANCE; OPTIMIZATION; HARDNESS;
D O I
10.1007/978-3-319-29221-2_6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we survey and supplement the complexity landscape of the domination chain parameters as a whole, including classifications according to approximability and parameterised complexity. Moreover, we provide clear pointers to yet open questions. As this posed the majority of hitherto unsettled problems, we focus on Upper IRREDUNDANCE and LOWER IRREDUNDANCE that correspond to finding the largest irredundant set and resp. the smallest maximal irredundant set. The problems are proved NP-hard even for planar cubic graphs. While LOWER IRREDUNDANCE is proved not c log(n)-approximable in polynomial time unless NP subset of DTIME(n(log log n)), no such result is known for Upper Irredundance. Their complementary versions are constantfactor approximable in polynomial time. All these four versions are APXhard even on cubic graphs.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [1] Domination chain: Characterisation, classical complexity, parameterised complexity and approximability
    Bazgan, Cristina
    Brankovic, Ljiljana
    Casel, Katrin
    Fernau, Henning
    DISCRETE APPLIED MATHEMATICS, 2020, 280 : 23 - 42
  • [2] Upper Domination: Complexity and Approximation
    Bazgan, Cristina
    Brankovic, Ljiljana
    Casel, Katrin
    Fernau, Henning
    Jansen, Klaus
    Klein, Kim-Manuel
    Lampis, Michael
    Liedloff, Mathieu
    Monnot, Jerome
    Paschos, Vangelis Th.
    COMBINATORIAL ALGORITHMS, 2016, 9843 : 241 - 252
  • [3] On the complexity of variations of mixed domination on graphs
    Lee, Chuan-Min
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (11) : 1937 - 1963
  • [4] The many facets of upper domination
    Bazgan, Cristina
    Brankovic, Ljiljana
    Casel, Katrin
    Fernau, Henning
    Jansen, Klaus
    Klein, Kim-Manuel
    Lampis, Michael
    Liedloff, Mathieu
    Monnot, Jerome
    Paschos, Vangelis Th.
    THEORETICAL COMPUTER SCIENCE, 2018, 717 : 2 - 25
  • [5] THE COMPLEXITY OF SECURE DOMINATION PROBLEM IN GRAPHS
    Wang, Haichao
    Zhao, Yancai
    Deng, Yunping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 385 - 396
  • [6] More on the complexity of defensive domination in graphs
    Henning, Michael A.
    Pandey, Arti
    Tripathi, Vikash
    DISCRETE APPLIED MATHEMATICS, 2025, 362 : 167 - 179
  • [7] Parameterized Complexity of Paired Domination
    Andreev, Nikita
    Bliznets, Ivan
    Kundu, Madhumita
    Saurabh, Saket
    Tripathi, Vikash
    Verma, Shaily
    COMBINATORIAL ALGORITHMS, IWOCA 2024, 2024, 14764 : 523 - 536
  • [8] INDEPENDENCE SATURATION AND EXTENDED DOMINATION CHAIN IN GRAPHS
    Arumugam, S.
    Subramanian, M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (02) : 171 - 181
  • [9] Complexity and Algorithms for Semipaired Domination in Graphs
    Henning, Michael A.
    Pandey, Arti
    Tripathi, Vikash
    COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 278 - 289
  • [10] Complexity Issues on of Secondary Domination Number
    Joanna Raczek
    Algorithmica, 2024, 86 : 1163 - 1172