K-means inverse regression

被引:53
|
作者
Setodji, CM [1 ]
Cook, RD
机构
[1] RAND Corp, Santa Monica, CA 90407 USA
[2] Univ Minnesota, Sch Stat, St Paul, MN 55108 USA
基金
美国国家科学基金会;
关键词
central subspaces; dimension reduction; functional data analysis; K-means clustering; multivariate regression; regression graphics; sliced inverse regression;
D O I
10.1198/004017004000000437
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Li suggested the method of sliced inverse regression for dimension reduction in regressions with a univariate response. In this article we extend that method to multivariate regressions by introducing a new way of performing the slicing. This method applies for any number of response variables and may be particularly useful at the outset of an analysis, before positing a multivariate model. The emphasis is on application; no new asymptotic theory is presented.
引用
收藏
页码:421 / 429
页数:9
相关论文
共 50 条
  • [1] Functional k-means inverse regression
    Wang, Guochang
    Lin, Nan
    Zhang, Baoxue
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 172 - 182
  • [2] A minimum discrepancy approach to multivariate dimension reduction via k-means inverse regression
    Wen, Xuerong Meggie
    Setodji, C. Messan
    Adekpedjou, Akim
    STATISTICS AND ITS INTERFACE, 2009, 2 (04) : 503 - 511
  • [3] K-medoids inverse regression
    Brusco, Michael J.
    Steinley, Douglas
    Stevens, Jordan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (20) : 4999 - 5011
  • [4] Functional Projection K-means
    Rocci, Roberto
    Gattone, Stefano A.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [5] k-means clustering of extremes
    Janssen, Anja
    Wan, Phyllis
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 1211 - 1233
  • [6] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [7] Anomaly Detection by Using Streaming K-Means and Batch K-Means
    Wang, Zhuo
    Zhou, Yanghui
    Li, Gangmin
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (IEEE ICBDA 2020), 2020, : 11 - 17
  • [8] Metamodeling by using Multiple Regression Integrated K-Means Clustering Algorithm
    Irfanoglu, Emre
    Akgun, Ilker
    Gunal, Murat M.
    EMERGING M&S APPLICATIONS IN INDUSTRY AND ACADEMIA SYMPOSIUM AND THE MODELING AND HUMANITIES SYMPOSIUM 2013 (EAIA AND MATH 2013) - 2013 SPRING SIMULATION MULTI-CONFERENCE (SPRINGSIM'13), 2013, 45 (05): : 55 - 62
  • [9] Discriminative K-Means Laplacian Clustering
    Chao, Guoqing
    NEURAL PROCESSING LETTERS, 2019, 49 (01) : 393 - 405
  • [10] Discriminative K-Means Laplacian Clustering
    Guoqing Chao
    Neural Processing Letters, 2019, 49 : 393 - 405