Aims: Voltage-gated potassium channels 1.3 (Kv1.3) can be targeted to reduce diet-induced obesity and insulin resistance in mice. Since species-specific differences in Kv1.3 expression and pharmacology have been observed, we tested the effect of Vm24, a high-affinity specific blocker of Kv1.3 channels from Vaejovis mexicanus smithi, on body weight (BW), glucose tolerance and insulin resistance in diet-induced obese rats. Materials and methods: Young adult male Wistar rats were switched to a high-fat/high-fructose (HFF) diet. Eighteen days later animals were divided in two groups: vehicle and Vm24 group. Subcutaneous injections were applied every other day until sacrifice 2 months later. An additional cohort was maintained on standard chow. Key findings: The HFF diet promoted obesity. Treatment with Vm24 did not alter various metabolic parameters such as food intake, BW gain, visceral white adipose tissue mass, adipocyte diameter, serum glucose, leptin and thyroid hormone concentrations, brown adipose tissue mass or uncoupling protein-1 expression, and insulin tolerance. Vm24 did reduce basal and glucose-stimulated serum insulin concentrations, serum C-peptide concentration, increased QUICKI, and tended to lower HOMA-IR. Vm24 treatment did not change the activation of insulin receptor substrate-1, but enhanced protein-kinase B activation and membrane glucose-transporter 4 (GLUT4) protein levels in skeletal muscle. Significance: In conclusion, inmale rats, long-term blockade of Kv1.3 channels with Vm24 does not reduce weight gain and visceral adiposity induced by HFF diet; instead, it reduces serum insulin concentration, and enhances GLUT4 mobilization in skeletal muscle. (C) 2017 Elsevier Inc. All rights reserved.