L1 retrotransposition requires rapid ORF1p oligomerization, a novel coiled coil-dependent property conserved despite extensive remodeling

被引:28
作者
Naufer, M. Nabuan [1 ]
Callahan, Kathryn E. [2 ]
Cook, Pamela R. [2 ]
Perez-Gonzalez, Cesar E. [2 ,3 ]
Williams, Mark C. [1 ]
Furano, Anthony V. [2 ]
机构
[1] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[2] NIDDK, Lab Cellular & Mol Biol, NIH, Bethesda, MD 20892 USA
[3] NEI, NIH, Bethesda, MD USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
TRIMERIC STRUCTURE; LINE-1; PROTEIN; RNA-BINDING; EVOLUTION; DNA; AMPLIFICATION; MOSAICISM; MUTATIONS; SEQUENCE; ELEMENTS;
D O I
10.1093/nar/gkv1342
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Detailed mechanistic understanding of L1 retrotransposition is sparse, particularly with respect to ORF1p, a coiled coil-mediated homotrimeric nucleic acid chaperone that can form tightly packed oligomers on nucleic acids. Although the coiled coil motif is highly conserved, it is uniquely susceptible to evolutionary change. Here we studied three ORF1 proteins: a modern human one (111p), its resuscitated primate ancestor (555p) and a mosaic modern protein (151p) wherein 9 of the 30 coiled coil substitutions retain their ancestral state. While 111p and 555p equally supported retrotransposition, 151p was inactive. Nonetheless, they were fully active in bulk assays of nucleic acid interactions including chaperone activity. However, single molecule assays showed that 151p trimers form stably bound oligomers on ssDNA at <1/10th the rate of the active proteins, revealing that oligomerization rate is a novel critical parameter of ORF1p activity in retrotransposition conserved for at least the last 25 Myr of primate evolution.
引用
收藏
页码:281 / 293
页数:13
相关论文
共 60 条
[21]   Paired mutations abolish and restore the balanced annealing and melting activities of ORF1p that are required for LINE-1 retrotransposition [J].
Evans, James D. ;
Peddigari, Suresh ;
Chaurasiya, Kathy R. ;
Williams, Mark C. ;
Martin, Sandra L. .
NUCLEIC ACIDS RESEARCH, 2011, 39 (13) :5611-5621
[22]   High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes [J].
Ewing, Adam D. ;
Kazazian, Haig H., Jr. .
GENOME RESEARCH, 2010, 20 (09) :1262-1270
[23]   Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition [J].
Feng, QH ;
Moran, JV ;
Kazazian, HH ;
Boeke, JD .
CELL, 1996, 87 (05) :905-916
[24]   The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons [J].
Furano, AV .
PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY, VOL 64, 2000, 64 :255-294
[25]   Genomic deletions created upon LINE-1 retrotransposition [J].
Gilbert, N ;
Lutz-Prigge, S ;
Moran, JV .
CELL, 2002, 110 (03) :315-325
[26]   Structural specificity in coiled-coil interactions [J].
Grigoryan, Gevorg ;
Keating, Amy E. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2008, 18 (04) :477-483
[27]   Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA [J].
Hohjoh, H ;
Singer, MF .
EMBO JOURNAL, 1996, 15 (03) :630-639
[28]   Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons [J].
Iskow, Rebecca C. ;
McCabe, Michael T. ;
Mills, Ryan E. ;
Torene, Spencer ;
Pittard, W. Stephen ;
Neuwald, Andrew F. ;
Van Meir, Erwin G. ;
Vertino, Paula M. ;
Devine, Scott E. .
CELL, 2010, 141 (07) :1253-U268
[29]   Identification and solution structure of a highly conserved C-terminal domain within ORF1p required for retrotransposition of long interspersed nuclear element-1 [J].
Januszyk, Kurt ;
Li, Patrick Wai-Lun ;
Villareal, Valerie ;
Branciforte, Dan ;
Wu, Haihong ;
Xie, Yongming ;
Feigon, Juli ;
Loo, Joseph A. ;
Martin, Sandra L. ;
Clubb, Robert T. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (34) :24893-24904
[30]   Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates [J].
Khan, H ;
Smit, A ;
Boissinot, S .
GENOME RESEARCH, 2006, 16 (01) :78-87