Solution of the damped cubic-quintic Duffing oscillator by using Jacobi elliptic functions

被引:18
作者
Elias-Zuniga, Alex [1 ]
机构
[1] Tecnol Monterrey, Ctr Innovac Diseno & Tecnol, Monterrey 64849, NL, Mexico
关键词
Jacobian elliptic functions; Cubic-quintic nonlinear terms; Damped Duffing equation; Electromagnetic pulses; EQUATION; BEAM;
D O I
10.1016/j.amc.2014.07.110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive an analytical solution of the damped cubic-quintic Duffing oscillator which is based on a rational elliptic form used to obtain exact and approximate solutions of undamped oscillators. We examine different set of system parameter values to assess the accuracy of our derived solution. It is shown that theoretical predictions compares well with the numerical integration solutions obtained by a fourth order Runge-Kutta method. This demonstrates the applicability of rational elliptic forms to solve damped oscillators with higher nonlinear terms. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:474 / 481
页数:8
相关论文
共 20 条
[1]   An accurate closed-form approximate solution for the quintic Duffing oscillator equation [J].
Belendez, A. ;
Bernabeu, G. ;
Frances, J. ;
Mendez, D. I. ;
Marini, S. .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (3-4) :637-641
[2]  
Byrd PF., 1953, HDB ELLIPTIC INTEGRA
[3]   Effects of practice and task constraints on stiffness and friction functions in biological movements [J].
Delignières, D ;
Nourrit, D ;
Deschamps, T ;
Lauriot, B ;
Caillou, N .
HUMAN MOVEMENT SCIENCE, 1999, 18 (06) :769-793
[4]   Exact solution of the cubic-quintic Duffing oscillator [J].
Elias-Zuniga, Alex .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (04) :2574-2579
[5]   Analytical solution of the damped Helmholtz-Duffing equation [J].
Elias-Zuniga, Alex .
APPLIED MATHEMATICS LETTERS, 2012, 25 (12) :2349-2353
[6]   Solution of nonlinear cubic-quintic Duffing oscillators using He's Energy Balance Method [J].
Ganji, D. D. ;
Gorji, M. ;
Soleimani, S. ;
Esmaeilpour, M. .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (09) :1263-1268
[7]   VARIATIONAL APPROACH METHOD FOR NONLINEAR OSCILLATIONS OF THE MOTION OF A RIGID ROD ROCKING BACK AND CUBIC-QUINTIC DUFFING OSCILLATORS [J].
Ganji, S. S. ;
Ganji, D. D. ;
Babazadeh, H. ;
Karimpour, S. .
PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2008, 4 :23-32
[8]  
Kulkarni R.G., 2008, Atlantic Electr. J. Math., V3, P56
[9]   Newton-harmonic balancing approach for accurate solutions to nonlinear cubic-quintic Duffing oscillators [J].
Lai, S. K. ;
Lim, C. W. ;
Wu, B. S. ;
Wang, C. ;
Zeng, Q. C. ;
He, X. F. .
APPLIED MATHEMATICAL MODELLING, 2009, 33 (02) :852-866
[10]  
Lawden D. F., 1989, Elliptic functions and applications