Multi-phase simultaneous segmentation of tumor in lung 4D-CT data with context information

被引:2
作者
Shen, Zhengwen [1 ,2 ]
Wang, Huafeng [1 ,2 ]
Xi, Weiwen [1 ,2 ]
Deng, Xiaogang [3 ]
Chen, Jin [1 ,2 ]
Zhang, Yu [1 ,2 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou, Guangdong, Peoples R China
[2] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangzhou, Guangdong, Peoples R China
[3] Southern Med Univ, Nanfang Hosp, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY MINIMIZATION; SHAPE PRIOR; CT; IMAGES; PET; MOTION; MRI;
D O I
10.1371/journal.pone.0178411
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lung 4D computed tomography (4D-CT) plays an important role in high-precision radiotherapy because it characterizes respiratory motion, which is crucial for accurate target definition. However, the manual segmentation of a lung tumor is a heavy workload for doctors because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is still a notoriously challenging problem in computer-aided diagnosis. In this paper, we propose a new method based on an improved graph cut algorithm with context information constraint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We combine all phases of the lung 4D-CT into a global graph, and construct a global energy function accordingly. The sub-graph is first constructed for each phase. A context cost term is enforced to achieve segmentation results in every phase by adding a context constraint between neighboring phases. A global energy function is finally constructed by combining all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases. The effectiveness of our approach is validated through experiments on 10 different lung 4D-CT cases. The comparison with the graph cut without context constraint, the level set method and the graph cut with star shape prior demonstrates that the proposed method obtains more accurate and robust segmentation results.
引用
收藏
页数:16
相关论文
共 31 条
[1]  
Awad J, 2011, P SPIE INT SOC OPTIC, V7963, P345
[2]   Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images [J].
Bagci, Ulas ;
Udupa, Jayaram K. ;
Mendhiratta, Neil ;
Foster, Brent ;
Xu, Ziyue ;
Yao, Jianhua ;
Chen, Xinjian ;
Mollura, Daniel J. .
MEDICAL IMAGE ANALYSIS, 2013, 17 (08) :929-945
[3]   Lung tumor segmentation in PET images using graph cuts [J].
Ballangan, Cherry ;
Wang, Xiuying ;
Fulham, Michael ;
Eberl, Stefan ;
Feng, David Dagan .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 109 (03) :260-268
[4]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[5]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[6]  
Boykov Y, 2000, LECT NOTES COMPUT SC, V1935, P276
[7]   Graph cuts and efficient N-D image segmentation [J].
Boykov, Yuri ;
Funka-Lea, Gareth .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 70 (02) :109-131
[8]  
Boykov YY, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, P105, DOI 10.1109/ICCV.2001.937505
[9]   A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets [J].
Castillo, Richard ;
Castillo, Edward ;
Guerra, Rudy ;
Johnson, Valen E. ;
McPhail, Travis ;
Garg, Amit K. ;
Guerrero, Thomas .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (07) :1849-1870
[10]  
Cui H, 2013, IEEE ENG MED BIO, P6071, DOI 10.1109/EMBC.2013.6610937