Comparison of empirical remote-sensing based models for the estimation of gross primary productivity using eddy covariance and satellite data over agroecosystem

被引:3
作者
Pokhariyal, Shweta [1 ]
Patel, N. R. [1 ]
机构
[1] Govt India, Agr & Soils Dept, Indian Inst Remote Sensing, 4 Kalidas Rd, Dehra Dun 248001, Uttarakhand, India
关键词
Agriculture; Gross primary production; GR; PCM; TG; VI x VI; ENHANCED VEGETATION INDEX; ECOSYSTEM RESPIRATION; MULTIPLE MODELS; GPP MODELS; FLUX-TOWER; MODIS; EFFICIENCY; RADIATION; MAIZE; SITE;
D O I
10.1007/s42965-021-00166-1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Estimation of terrestrial gross primary productivity (GPP) is critical for global climate and ecological studies. However, the lack of multi-model studies for GPP estimation over agroecosystem in India limits the carbon budgeting at the regional scales. Satellite-derived parameters [(e.g., land surface temperature (LST), Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)] combined with meteorological variables offer a promising tool for regional estimates of the GPP. In this study, site-specific GPP was evaluated based on the eddy-covariance (EC) tower data and satellite-derived parameters. Four satellite-based GPP models, (a) greenness and radiation (GR) model, (b) VI x VI model, (c) photosynthetic capacity model (PCM), and (d) temperature and greenness (TG) model have been compared for the estimation of GPP in Saharanpur Flux tower site (SFS) from April 2014 to April 2015 using meteorological variables from EC and the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images. Among the predictive GPP models, TG models performed best with the RMSE of 2.03 g C m(-2) day(-1). The relationship of MODIS-LST with photosynthetically active radiation (PAR), GPP and air temperature (Ta) indicates that the climate variables are imperative for GPP estimation. In the VI x VI model series, the combination of EVI x EVI x PAR provided the best GPP estimates with an RMSE of 2.99 g C m(-2) day(-1). The comparative analysis of the GPP models has the potential for GPP estimates over agroecosystems and further carbon flux predictions at the regional scale.
引用
收藏
页码:600 / 611
页数:12
相关论文
共 45 条
[1]   Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques [J].
Baker, JM ;
Griffis, TJ .
AGRICULTURAL AND FOREST METEOROLOGY, 2005, 128 (3-4) :163-177
[2]   Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate [J].
Beer, Christian ;
Reichstein, Markus ;
Tomelleri, Enrico ;
Ciais, Philippe ;
Jung, Martin ;
Carvalhais, Nuno ;
Roedenbeck, Christian ;
Arain, M. Altaf ;
Baldocchi, Dennis ;
Bonan, Gordon B. ;
Bondeau, Alberte ;
Cescatti, Alessandro ;
Lasslop, Gitta ;
Lindroth, Anders ;
Lomas, Mark ;
Luyssaert, Sebastiaan ;
Margolis, Hank ;
Oleson, Keith W. ;
Roupsard, Olivier ;
Veenendaal, Elmar ;
Viovy, Nicolas ;
Williams, Christopher ;
Woodward, F. Ian ;
Papale, Dario .
SCIENCE, 2010, 329 (5993) :834-838
[3]  
Burba G., 2013, Eddy covariance method for scientific, industrial, agricultural and regulatory applications: a field book on measuring ecosystem gas exchange and areal emission rates
[4]   Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks [J].
Canadell, Josep G. ;
Le Quéré, Corinne ;
Raupach, Michael R. ;
Field, Christopher B. ;
Buitenhuis, Erik T. ;
Ciais, Philippe ;
Conway, Thomas J. ;
Gillett, Nathan P. ;
Houghton, R. A. ;
Marland, Gregg .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18866-18870
[5]   DEFINING LEAF-AREA INDEX FOR NON-FLAT LEAVES [J].
CHEN, JM ;
BLACK, TA .
PLANT CELL AND ENVIRONMENT, 1992, 15 (04) :421-429
[6]   Validation of QuikSCAT wind vectors by dropwindsonde data from Dropwindsonde Observations for Typhoon Surveillance Near the Taiwan Region (DOTSTAR) [J].
Chou, Kun-Hsuan ;
Wu, Chun-Chieh ;
Lin, Po-Hsiung ;
Majumdar, Sharanya .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[7]   Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought [J].
Dong, Jinwei ;
Xiao, Xiangming ;
Wagle, Pradeep ;
Zhang, Geli ;
Zhou, Yuting ;
Jin, Cui ;
Torn, Margaret S. ;
Meyers, Tilden P. ;
Suyker, Andrew E. ;
Wang, Junbang ;
Yan, Huimin ;
Biradar, Chandrashekhar ;
Moore, Berrien, III .
REMOTE SENSING OF ENVIRONMENT, 2015, 162 :154-168
[8]   Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements [J].
Falge, E ;
Baldocchi, D ;
Tenhunen, J ;
Aubinet, M ;
Bakwin, P ;
Berbigier, P ;
Bernhofer, C ;
Burba, G ;
Clement, R ;
Davis, KJ ;
Elbers, JA ;
Goldstein, AH ;
Grelle, A ;
Granier, A ;
Guomundsson, J ;
Hollinger, D ;
Kowalski, AS ;
Katul, G ;
Law, BE ;
Malhi, Y ;
Meyers, T ;
Monson, RK ;
Munger, JW ;
Oechel, W ;
Paw, KT ;
Pilegaard, K ;
Rannik, Ü ;
Rebmann, C ;
Suyker, A ;
Valentini, R ;
Wilson, K ;
Wofsy, S .
AGRICULTURAL AND FOREST METEOROLOGY, 2002, 113 (1-4) :53-74
[9]   A MODIS-based Photosynthetic Capacity Model to estimate gross primary production in Northern China and the Tibetan Plateau [J].
Gao, Yanni ;
Yu, Guirui ;
Yan, Huimin ;
Zhu, Xianjin ;
Li, Shenggong ;
Wang, Qiufeng ;
Zhang, Junhui ;
Wang, Yanfen ;
Li, Yingnian ;
Zhao, Liang ;
Shi, Peili .
REMOTE SENSING OF ENVIRONMENT, 2014, 148 :108-118
[10]   Relationship between gross primary production and chlorophyll content in crops:: Implications for the synoptic monitoring of vegetation productivity [J].
Gitelson, AA ;
Viña, A ;
Verma, SB ;
Rundquist, DC ;
Arkebauer, TJ ;
Keydan, G ;
Leavitt, B ;
Ciganda, V ;
Burba, GG ;
Suyker, AE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D8)