Backward Euler type methods for parabolic integro-differential equations in Banach space

被引:0
作者
Bakaev, NY
Larsson, S
Thomee, V
机构
[1] AF Engn Acad, Dept Math, Moscow 125190, Russia
[2] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
[3] Gothenburg Univ, S-41296 Gothenburg, Sweden
来源
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1998年 / 32卷 / 01期
关键词
integro-differential equation; parabolic; backward Euler; sparse quadrature; finite element method; Banach space; maximum norm;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Time discretization by backward Euler type methods for a parabolic equation with memory is studied. Stability and error estimates are proved under conditions that permit quadrature rules for approximation of the memory term that have reduced storage requirements. The analysis takes place in a Banach space framework, and the results are used to derive error estimates in the L-2 and maximum norms for piecewise linear finite element discretization in two space dimensions. (C) Elsevier, Paris.
引用
收藏
页码:85 / 99
页数:15
相关论文
共 6 条
[1]  
CROUZEIX M, 1994, MATH COMPUT, V63, P121, DOI 10.1090/S0025-5718-1994-1242058-1
[2]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI [10.1007/978-1-4612-5561-1, DOI 10.1007/978-1-4612-5561-1]
[3]   MAXIMUM NORM STABILITY AND ERROR-ESTIMATES IN PARABOLIC FINITE-ELEMENT EQUATIONS [J].
SCHATZ, AH ;
THOMEE, V ;
WAHLBIN, LB .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (03) :265-304
[4]   TIME DISCRETIZATION OF AN INTEGRODIFFERENTIAL EQUATION OF PARABOLIC TYPE [J].
SLOAN, IH ;
THOMEE, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (05) :1052-1061
[5]   ERROR-ESTIMATES FOR SEMIDISCRETE FINITE-ELEMENT METHODS FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS [J].
THOMEE, V ;
ZHANG, NY .
MATHEMATICS OF COMPUTATION, 1989, 53 (187) :121-139
[6]  
ZHANG NY, 1993, MATH COMPUT, V60, P133, DOI 10.1090/S0025-5718-1993-1149295-4