A long-term stable organic semiconductor photocathode-based photoelectrochemical module system for hydrogen production

被引:9
作者
Seo, Sehun [1 ,2 ]
Lee, Jong-Hoon [1 ,3 ]
Kim, Yejoon [1 ]
Kim, Seungkyu [1 ]
Yoon, Chang Jae [4 ]
Choi, Hojoong [1 ]
Lee, Sanseong [1 ,4 ,5 ]
Lee, Kwanghee [1 ,4 ,5 ]
Kim, Heejoo [5 ,6 ]
Lee, Sanghan [1 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Gwangju 61005, South Korea
[2] Lawrence Berkeley Natl Lab, Chem Sci Div & Liquid Sunlight Alliance, Berkeley, CA 94720 USA
[3] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[4] Gwangju Inst Sci & Technol, Res Inst Solar & Sustainable Energies, Gwangju 61005, South Korea
[5] Gwangju Inst Sci & Technol, Heeger Ctr Adv Mat, Gwangju 61005, South Korea
[6] Gwangju Inst Sci & Technol, Inst Integrated Technol, Grad Sch Energy Convergence, Gwangju 61005, South Korea
基金
新加坡国家研究基金会;
关键词
SOLAR-CELLS; EFFICIENT;
D O I
10.1039/d2ta02322a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photoelectrochemical (PEC) water splitting based on organic semiconductors (OSs) is a promising way to enable sustainable hydrogen production because of their high photovoltaic performance and mass productivity by low-cost printing. However, their application to photocathodes has drawbacks such as low efficiency and poor operational stability, which result from rapid device degradation or failure under harsh operating conditions. In this study, we developed a stable and efficient OS-based PEC photocathode module using the metal encapsulation technique. Our OS-photocathode shows a photocurrent density of -12.3 mA cm(-2) at 0 V versus the reversible hydrogen electrode (RHE) and an onset potential of 1 V-RHE. These are similar to the values of both the short circuit current and open circuit potential of its photovoltaic cell. Notably, our photocathode represents unprecedented stability: maintaining over 95.4% of the maximum photocurrent for over 30 h without significant degradation of the OS. In addition, we successfully demonstrate a PEC module based on OS-photocathodes in parallel connection in a real environment, confirming the potential of the OS-based photoelectrodes for sustainable hydrogen production.
引用
收藏
页码:13247 / 13253
页数:8
相关论文
共 49 条
[31]   A Review of Inorganic Photoelectrode Developments and Reactor Scale-Up Challenges for Solar Hydrogen Production [J].
Moss, Benjamin ;
Babacan, Oytun ;
Kafizas, Andreas ;
Hankin, Anna .
ADVANCED ENERGY MATERIALS, 2021, 11 (13)
[32]   Is the H2 economy realizable in the foreseeable future? Part I: H2 production methods [J].
Nazir, Hassan ;
Louis, Cindrella ;
Jose, Sujin ;
Prakash, Jyoti ;
Muthuswamy, Navaneethan ;
Buan, Marthe E. M. ;
Flox, Cristina ;
Chavan, Sai ;
Shi, Xuan ;
Kauranen, Pertti ;
Kallio, Tanja ;
Maia, Gilberto ;
Tammeveski, Kaido ;
Lymperopoulos, Nikolaos ;
Carcadea, Elena ;
Veziroglu, Emre ;
Iranzo, Alfredo ;
Kannan, Arunachala M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (27) :13777-13788
[33]   Photocatalytic solar hydrogen production from water on a 100-m2 scale [J].
Nishiyama, Hiroshi ;
Yamada, Taro ;
Nakabayashi, Mamiko ;
Maehara, Yoshiki ;
Yamaguchi, Masaharu ;
Kuromiya, Yasuko ;
Nagatsuma, Yoshie ;
Tokudome, Hiromasa ;
Akiyama, Seiji ;
Watanabe, Tomoaki ;
Narushima, Ryoichi ;
Okunaka, Sayuri ;
Shibata, Naoya ;
Takata, Tsuyoshi ;
Hisatomi, Takashi ;
Domen, Kazunari .
NATURE, 2021, 598 (7880) :304-+
[34]   Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency [J].
Pihosh, Yuriy ;
Turkevych, Ivan ;
Mawatari, Kazuma ;
Uemura, Jin ;
Kazoe, Yutaka ;
Kosar, Sonya ;
Makita, Kikuo ;
Sugaya, Takeyoshi ;
Matsui, Takuya ;
Fujita, Daisuke ;
Tosa, Masahiro ;
Kondo, Michio ;
Kitamori, Takehiko .
SCIENTIFIC REPORTS, 2015, 5
[35]   Polymer-based photocathodes with a solution-processable cuprous iodide anode layer and a polyethyleneimine protective coating [J].
Rojas, Hansel Comas ;
Bellani, Sebastiano ;
Fumagalli, Francesco ;
Tullii, Gabriele ;
Leonardi, Silvia ;
Mayer, Matthew T. ;
Schreier, Marcel ;
Gratzel, Michael ;
Lanzani, Guglielmo ;
Di Fonzo, Fabio ;
Antognazza, Maria Rosa .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (12) :3710-3723
[36]   Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics [J].
Root, Samuel E. ;
Savagatrup, Suchol ;
Printz, Adam D. ;
Rodriquez, Daniel ;
Lipomi, Darren J. .
CHEMICAL REVIEWS, 2017, 117 (09) :6467-6499
[37]   Fabrication of bulk heterojunction plastic solar cells by screen printing [J].
Shaheen, SE ;
Radspinner, R ;
Peyghambarian, N ;
Jabbour, GE .
APPLIED PHYSICS LETTERS, 2001, 79 (18) :2996-2998
[38]   PTB7:PC61BM Bulk Heterojunction-Based Photocathodes for Efficient Hydrogen Production in Aqueous Solution [J].
Shi, Wenwen ;
Yu, Wei ;
Li, Deng ;
Zhang, Doudou ;
Fan, Wenjun ;
Shi, Jingying ;
Li, Can .
CHEMISTRY OF MATERIALS, 2019, 31 (06) :1928-1935
[39]   Stabilizing organic photocathodes by low-temperature atomic layer deposition of TiO2 [J].
Steier, Ludmilla ;
Bellani, Sebastiano ;
Rojas, Hansel Comas ;
Pan, Linfeng ;
Laitinen, Mikko ;
Sajavaara, Timo ;
Di Fonzo, Fabio ;
Gratzel, Michael ;
Antognazza, Maria Rosa ;
Mayer, Matthew T. .
SUSTAINABLE ENERGY & FUELS, 2017, 1 (09) :1915-1920
[40]   A realizable renewable energy future [J].
Turner, JA .
SCIENCE, 1999, 285 (5428) :687-689