Packing small boxes into a big box

被引:46
作者
Padberg, M [1 ]
机构
[1] Stat & Operat Res Dept, New York, NY 10003 USA
关键词
three-dimensional packing; mixed-integer programming; polyhedral combinatorics; cutting planes; facets of polyhedra;
D O I
10.1007/s001860000066
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The three-dimensional orthogonal packing problem consists of filling a big rectangular box with as many small rectangular boxes as possible. In a recent paper G. Fasano (Alenia Aerospazio, Turin) has given a mixed-integer programming formulation of this problem. Here we extend Fasano's formulation and subject it to polyhedral analysis. The result is a more general formulation whose linear programming relaxation is a tighter approximation of the convex hull of the mixed-integer solutions to the problem than the original model.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 26 条
[1]  
Applegate D., 1998, DOC MATH J DTSCH MAT, P645
[2]   EXPERIMENTS IN QUADRATIC 0-1 PROGRAMMING [J].
BARAHONA, F ;
JUNGER, M ;
REINELT, G .
MATHEMATICAL PROGRAMMING, 1989, 44 (02) :127-137
[3]   ON THE CUT POLYTOPE [J].
BARAHONA, F ;
MAHJOUB, AR .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :157-173
[4]   AN EXACT TWO-DIMENSIONAL NON-GUILLOTINE CUTTING TREE-SEARCH PROCEDURE [J].
BEASLEY, JE .
OPERATIONS RESEARCH, 1985, 33 (01) :49-64
[5]  
Christofides N., 1979, Combinatorial optimization, P339
[6]   ALGORITHM FOR 2-DIMENSIONAL CUTTING PROBLEMS [J].
CHRISTOFIDES, N ;
WHITLOCK, C .
OPERATIONS RESEARCH, 1977, 25 (01) :30-44
[7]   Exact ground states of two-dimensional +/-J ising spin glasses [J].
DeSimone, C ;
Diehl, M ;
Junger, M ;
Mutzel, P ;
Reinelt, G ;
Rinaldi, G .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (5-6) :1363-1371
[8]  
DEZA M, 1998, CUTS METRICS
[9]  
DYCKHOFF H, 1997, ANNOTATED BIBLIOGRAP, P393
[10]  
Fasano G., 1999, OPERATIONAL RES IND