Explicit numerical integration algorithm for a class of non-linear kinematic hardening model

被引:13
作者
Wang, CH
Hu, W
Sawyer, JPG
机构
[1] Def Sci & Technol Org, Aeronaut & Maritime Res Lab, Melbourne, Vic 3207, Australia
[2] Monash Univ, Dept Mech Engn, Clayton, Vic 3168, Australia
关键词
D O I
10.1007/s004660000161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An explicit updating algorithm has been developed for the Armstrong-Frederick family of non-linear kinematic hardening model, based on the trapezoidal and the backward Euler integration method. The algorithm provides a computationally efficient method for implementing the non-linear kinematic hardening model in finite element codes. It is shown that the trapezoidal method performs better with the original Armstrong-Frederick rule, while the backward Euler rule provides an improved accuracy to the modified multiple back-stress model that incorporates a weight function for dynamic recovery. Numerical examples are presented to illustrate the performance of the algorithm developed, and a comparison with the experimental observation shows that the modified constitutive model indeed provides a more accurate prediction to the long term mean stress relaxation.
引用
收藏
页码:140 / 147
页数:8
相关论文
共 50 条
[42]   AN ALGORITHM FOR TESTING ATTAINABILITY FOR A CERTAIN CLASS OF NON-LINEAR SYSTEMS [J].
PUPKOV, KA ;
FROLOV, YB .
ENGINEERING CYBERNETICS, 1980, 18 (06) :115-123
[43]   ON A CLASS OF NON-LINEAR WEAKLY HYPERBOLIC NON-LINEAR OPERATOR [J].
GOURDIN, D .
BULLETIN DES SCIENCES MATHEMATIQUES, 1989, 113 (01) :23-50
[44]   Non-linear rock creep model based on hardening and damage effect [J].
Song, Yong-Jun ;
Lei, Sheng-You ;
Liu, Xiang-Ke .
Meitan Xuebao/Journal of the China Coal Society, 2012, 37 (SUPPL. 2) :287-292
[45]   Exact integration of the von Mises elastoplasticity model with combined linear isotropic-kinematic hardening [J].
Kossa, Attila ;
Szabo, Laszlo .
INTERNATIONAL JOURNAL OF PLASTICITY, 2009, 25 (06) :1083-1106
[46]   A non-linear numerical model of the tuned liquid damper [J].
Yu, JK ;
Wakahara, T ;
Reed, DA .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1999, 28 (06) :671-686
[47]   NON-LINEAR NUMERICAL-MODEL OF OCEANIC FRONTOGENESIS [J].
KUZMINA, NP .
IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1981, 17 (12) :1318-1325
[48]   A non-linear numerical model of the tuned liquid damper [J].
Skilling, Ward, Magnusson, B., Seattle, WA 98195, United States ;
不详 ;
不详 ;
不详 ;
不详 .
Earthqua. Eng. Struct. Dyn., 6 (671-686)
[49]   Some remarks on the numerical time integration of non-linear dynamical systems [J].
Bornemann, PB ;
Galvanetto, U ;
Crisfield, MA .
JOURNAL OF SOUND AND VIBRATION, 2002, 252 (05) :935-944
[50]   The development and validation of a numerical integration method for non-linear viscoelastic modeling [J].
Ramo, Nicole L. ;
Puttlitz, Christian M. ;
Troyer, Kevin L. .
PLOS ONE, 2018, 13 (01)