Reversibility and quasi-homogeneous normal forms of vector fields

被引:19
作者
Algaba, A. [2 ]
Garcia, C. [2 ]
Teixeira, M. A. [1 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Math, Campinas, SP, Brazil
[2] Univ Huelva, Fac Ciencias, Dept Math, Huelva, Spain
关键词
Reversibility; Quasi-homogeneous system; Normal form; Singularity; Center; NILPOTENT CENTERS; INTEGRABILITY; SYSTEMS;
D O I
10.1016/j.na.2010.03.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper uses tools in quasi-homogeneous normal form theory to discuss certain aspects of reversible vector fields around an equilibrium point. Our main result provides an algorithm, via Lie Triangle, that detects the non-reversibility of vector fields. That is, it is possible to decide whether a planar center is not reversible. Some of the theory developed is also applied to get further results on nilpotent and degenerate polynomial vector fields. We find several families of nilpotent centers which are non-reversible. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:510 / 525
页数:16
相关论文
共 24 条
[11]  
Bruno A.D., 1989, Local Methods in Nonlinear Differential Equations
[12]   Local analytic integrability for nilpotent centers [J].
Chavarriga, J ;
Giacomin, H ;
Giné, J ;
Llibre, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :417-428
[13]   Integrability of centers perturbed by quasi-homogeneous polynomials [J].
Chavarriga, J ;
Garcia, I ;
Gine, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (01) :268-278
[14]   Center problem for several differential equations via Cherkas' method [J].
Gasull, A ;
Torregrosa, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 228 (02) :322-343
[15]   Time-reversal symmetry in dynamical systems: A survey [J].
Lamb, JSW ;
Roberts, JAG .
PHYSICA D, 1998, 112 (1-2) :1-39
[16]   Darboux integrability and reversible quadratic vector fields [J].
Llibre, J ;
Medrado, JC .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (06) :1999-2057
[17]  
Montgomery D., 1955, Topological transformation groups
[18]  
oladek H., 1994, TOPOL METHOD NONL AN, V4, P79, DOI [DOI 10.12775/TMNA.1994.024, 10.12775/TMNA.1994.024]
[19]  
POINCARE H, 1951, OEUVRES H POINCARE, V1
[20]  
Sibirskii K.S., 1965, DIFFER EQU, V1, P36