Time-dependent diffusion operators on L

被引:9
作者
Stannat, W [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
sub-Markovian evolution semigroup; space-time homogenization; infinitesimally invariant measure; generalized Dirichlet forms; diffusion process; martingale problem; Nelson diffusions;
D O I
10.1007/s00028-004-0147-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for time-dependent diffusion operators with singular coefficients on L-1-spaces induced by infinitesimal invariant measures. We give sufficient conditions on the coefficients such that the Cauchy-Problem is well-posed. We construct associated diffusion processes with the help of the theory of generalized Dirichlet forms. We apply our results in particular to construct a large class of Nelson-diffusions that could not been constructed before.
引用
收藏
页码:463 / 495
页数:33
相关论文
共 21 条
  • [1] Adams R., 1975, Sobolev space
  • [2] Aebi R, 1996, SCHRODINGER DIFFUSIO
  • [3] Arendt W., 1986, ONE PARAMETER SEMIGR, V1184
  • [4] CONSERVATIVE DIFFUSIONS
    CARLEN, EA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (03) : 293 - 315
  • [5] CATTIAUX P, 1995, ANN I H POINCARE-PR, V31, P705
  • [6] CATTIAUX P, 1994, ANN I H POINCARE-PR, V30, P83
  • [7] ENGEL KJ, 2000, 1 PARAMETER SEMIGROU
  • [8] FRIEDMAN A., 1964, Partial differential equations of parabolic type
  • [9] Kato T., 1980, PERTURBATION THEORY
  • [10] Lions J., 1972, Die Grundlehren der mathematischen Wissenschaften, V181