Time-dependent diffusion operators on L

被引:9
|
作者
Stannat, W [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
sub-Markovian evolution semigroup; space-time homogenization; infinitesimally invariant measure; generalized Dirichlet forms; diffusion process; martingale problem; Nelson diffusions;
D O I
10.1007/s00028-004-0147-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for time-dependent diffusion operators with singular coefficients on L-1-spaces induced by infinitesimal invariant measures. We give sufficient conditions on the coefficients such that the Cauchy-Problem is well-posed. We construct associated diffusion processes with the help of the theory of generalized Dirichlet forms. We apply our results in particular to construct a large class of Nelson-diffusions that could not been constructed before.
引用
收藏
页码:463 / 495
页数:33
相关论文
共 50 条
  • [1] Time-dependent diffusion operators on L1
    Wilhelm Stannat
    Journal of Evolution Equations, 2004, 4 : 463 - 495
  • [2] TIME-DEPENDENT PERTURBATIONS AT TIME-DEPENDENT LINEAR ACCRETIVE OPERATORS
    FITZGIBB.WE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A157 - A157
  • [3] TIME-DEPENDENT HEAVISIDE OPERATORS
    ZADEH, LA
    JOURNAL OF MATHEMATICS AND PHYSICS, 1951, 30 (02): : 73 - 78
  • [4] Time-dependent recursion operators and symmetries
    Gürses, M
    Karasu, A
    Turhan, R
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2002, 9 (02) : 210 - 228
  • [5] Time-Dependent Recursion Operators and Symmetries
    M Gürses
    A Karasu
    R Turhan
    Journal of Nonlinear Mathematical Physics, 2002, 9 : 210 - 228
  • [6] FRACTIONAL DIFFUSION WITH TIME-DEPENDENT DIFFUSION COEFFICIENT
    Costa, F. S.
    De Oliveira, E. Capelas
    Plata, Adrian R. G.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 87 (01) : 59 - 79
  • [7] Invariant operators and Heisenberg operators for time-dependent generalized oscillators
    Kim, SP
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 43 (01) : 11 - 16
  • [8] Time-dependent formulation of the Bogoliubov transformation and time-evolution operators for time-dependent quantum oscillators
    Liu, WS
    Li, XP
    EUROPHYSICS LETTERS, 2002, 58 (05): : 639 - 645
  • [9] Time-dependent diffusion in A-stars
    Alecian, G
    PROCEEDINGS OF THE 26TH MEETING AND WORKSHOP OF THE EUROPEAN WORKING GROUP ON CP STARS, 1998, 27 (03): : 290 - 295
  • [10] Time-Dependent Diffusion in Prostate Cancer
    Lemberskiy, Gregory
    Rosenkrantz, Andrew B.
    Veraart, Jelle
    Taneja, Samir S.
    Novikov, Dmitry S.
    Fieremans, Els
    INVESTIGATIVE RADIOLOGY, 2017, 52 (07) : 405 - 411