Input-output theory for superconducting and photonic circuits that contain weak retroreflections and other weak pseudocavities

被引:10
作者
Cook, Robert [1 ]
Schuster, David, I [2 ,3 ]
Cleland, Andrew N. [4 ]
Jacobs, Kurt [1 ,5 ,6 ]
机构
[1] US Army, Res Lab, Computat & Informat Sci Directorate, Adelphi, MD 20783 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[4] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA
[5] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA
[6] Louisiana State Univ, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
关键词
QUANTUM STATE TRANSFER; SYSTEM; LIGHT; DOT;
D O I
10.1103/PhysRevA.98.013801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Input-output theory is invaluable for treating superconducting and photonic circuits connected by transmission lines or waveguides. However, this theory cannot in general handle situations in which retroreflections from circuit components or configurations of beam splitters create loops for the traveling-wave fields that connect the systems. Here, building upon the network-contraction theory of Gough and James [Commun. Math. Phys. 287, 1109 ( 2009)], we provide a compact and powerful method to treat any circuit that contains such loops so long as the effective cavities formed by the loops are sufficiently weak. Essentially all present-day on-chip superconducting and photonic circuits will satisfy this weakness condition so long as the reflectors that form the loops are not especially highly reflecting. As an example, we analyze the problem of transmitting entanglement between two qubits connected by a transmission linewith imperfect circulators, a problem forwhich our method is essential. We obtain a full solution for the optimal receiver given that the sender employs a simple turn-on-turn-off procedure. This solution shows that near-perfect transmission is possible even with significant retroreflections.
引用
收藏
页数:16
相关论文
共 37 条
[1]   Atom-light interactions in quasi-one-dimensional nanostructures: A Green's-function perspective [J].
Asenjo-Garcia, A. ;
Hood, J. D. ;
Chang, D. E. ;
Kimble, H. J. .
PHYSICAL REVIEW A, 2017, 95 (03)
[2]   On-demand quantum state transfer and entanglement between remote microwave cavity memories [J].
Axline, Christopher J. ;
Burkhart, Luke D. ;
Pfaff, Wolfgang ;
Zhang, Mengzhen ;
Chou, Kevin ;
Campagne-Ibarcq, Philippe ;
Reinhold, Philip ;
Frunzio, Luigi ;
Girvin, S. M. ;
Jiang, Liang ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE PHYSICS, 2018, 14 (07) :705-+
[3]   Efficient coupling to an optical resonator by exploiting time-reversal symmetry [J].
Bader, M. ;
Heugel, S. ;
Chekhov, A. L. ;
Sondermann, M. ;
Leuchs, G. .
NEW JOURNAL OF PHYSICS, 2013, 15
[4]   Quantum state transfer and entanglement distribution among distant nodes in a quantum network [J].
Cirac, JI ;
Zoller, P ;
Kimble, HJ ;
Mabuchi, H .
PHYSICAL REVIEW LETTERS, 1997, 78 (16) :3221-3224
[5]   Sideband cooling beyond the quantum backaction limit with squeezed light [J].
Clark, Jeremy B. ;
Lecocq, Florent ;
Simmonds, Raymond W. ;
Aumentado, Jose ;
Teufel, John D. .
NATURE, 2017, 541 (7636) :191-+
[6]   SQUEEZING OF INTRACAVITY AND TRAVELING-WAVE LIGHT FIELDS PRODUCED IN PARAMETRIC AMPLIFICATION [J].
COLLETT, MJ ;
GARDINER, CW .
PHYSICAL REVIEW A, 1984, 30 (03) :1386-1391
[7]   The SLH framework for modeling quantum input-output networks [J].
Combes, Joshua ;
Kerckhoff, Joseph ;
Sarovar, Mohan .
ADVANCES IN PHYSICS-X, 2017, 2 (03) :784-888
[8]   COHERENCE IN SPONTANEOUS RADIATION PROCESSES [J].
DICKE, RH .
PHYSICAL REVIEW, 1954, 93 (01) :99-110
[9]  
Fischer KA, 2016, NAT PHOTONICS, V10, P163, DOI [10.1038/nphoton.2015.276, 10.1038/NPHOTON.2015.276]
[10]   Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice [J].
Fitzpatrick, Mattias ;
Sundaresan, Neereja M. ;
Li, Andy C. Y. ;
Koch, Jens ;
Houck, Andrew A. .
PHYSICAL REVIEW X, 2017, 7 (01)