Functional domains in tetraspanin proteins

被引:376
作者
Stipp, CS
Kolesnikova, TV
Hemler, ME
机构
[1] Dana Farber Canc Inst, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
关键词
D O I
10.1016/S0968-0004(02)00014-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Exciting new findings have emerged about the structure, function and biochemistry of tetraspanin proteins. Five distinct tetraspanin regions have now been delineated linking structural features to specific functions. Within the large extracellular loop of tetraspanins, there is a variable region that mediates specific interactions with other proteins, as well as a more highly conserved region that has been suggested to mediate homodimerization. Within the transmembrane region, the four tetraspanin transmembrane domains are probable sites of both intra- and inter-molecular interactions that are crucial during biosynthesis and assembly of the network of tetraspanin-linked membrane proteins known as the 'tetraspanin web'. In the intracellular juxtamembrane region, palmitoylation of cysteine residues also contributes to tetraspanin web assembly, and the C-terminal cytoplasmic tail region could provide specific functional links to cytoskeletal or signaling proteins.
引用
收藏
页码:106 / 112
页数:7
相关论文
共 57 条
[1]   A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase [J].
Berditchevski, F ;
Tolias, KF ;
Wong, K ;
Carpenter, CL ;
Hemler, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (05) :2595-2598
[2]   Expression of the palmitoylation-deficient CD151 weakens the association of α3β1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling [J].
Berditchevski, F ;
Odintsova, E ;
Sawada, S ;
Gilbert, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (40) :36991-37000
[3]  
Berditchevski F, 2001, J CELL SCI, V114, P4143
[4]   Analysis of the CD151•α3β1 integrin and CD151•tetraspanin interactions by mutagenesis. [J].
Berditchevski, F ;
Gilbert, E ;
Griffiths, MR ;
Fitter, S ;
Ashman, L ;
Jenner, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (44) :41165-41174
[5]   KAI1, a prostate metastasis' suppressor: Prediction of solvated structure and interactions with binding partners; Integrins, cadherins, and cell-surface receptor proteins [J].
Bienstock, RJ ;
Barrett, JC .
MOLECULAR CARCINOGENESIS, 2001, 32 (03) :139-153
[6]   Molecular bases for the recognition of tyrosine-based sorting signals [J].
Bonifacino, JS ;
Dell'Angelica, EC .
JOURNAL OF CELL BIOLOGY, 1999, 145 (05) :923-926
[7]   Tetraspanins [J].
Boucheix, C ;
Rubinstein, E .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (09) :1189-1205
[8]  
Boucheix C., 2001, EXPERT REV MOL MED, V2001, P1
[9]   Quality control of transmembrane domain assembly in the tetraspanin CD82 [J].
Cannon, KS ;
Cresswell, P .
EMBO JOURNAL, 2001, 20 (10) :2443-2453
[10]   Differential stability of tetraspanin/tetraspanin interactions:: role of palmitoylation [J].
Charrin, S ;
Manié, S ;
Oualid, M ;
Billard, M ;
Boucheix, C ;
Rubinstein, E .
FEBS LETTERS, 2002, 516 (1-3) :139-144