LAGRANGE-TYPE OPERATORS ASSOCIATED WITHnρ

被引:3
作者
Gonska, Heiner [1 ]
Rasa, Joan [2 ]
Stanila, Elena-Donna [1 ]
机构
[1] Univ Duisburg Essen, Fac Math, D-47057 Duisburg, Germany
[2] Tech Univ Cluj Napoca, Dept Math, RO-400114 Cluj Napoca, Romania
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2014年 / 96卷 / 110期
关键词
Bernstein operators; genuine Bernstein-Durrmeyer operators; Paltanea operators; Lagrange interpolation; eigenstructure; iterated Boolean sum; representation of derivatives; APPROXIMATION;
D O I
10.2298/PIM1410159G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of positive linear operators which, among others, constitute a link between the classical Bernstein operators and the genuine Bernstein-Durrmeyer mappings. The focus is on their relation to certain Lagrange-type interpolators associated to them, a well known feature in the theory of Bernstein operators. Considerations concerning iterated Boolean sums and the derivatives of the operator images are included. Our main tool is the eigenstructure of the members of the class.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 16 条
[1]   The eigenstructure of the Bernstein operator [J].
Cooper, S ;
Waldron, S .
JOURNAL OF APPROXIMATION THEORY, 2000, 105 (01) :133-165
[2]  
Davis PJ, 1975, INTERPOLATION APPROX
[3]   The Eigenstructure of Operators Linking the Bernstein and the Genuine Bernstein-Durrmeyer operators [J].
Gonska, Heiner ;
Rasa, Ioan ;
Stanila, Elena-Dorina .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) :561-576
[4]   SIMULTANEOUS APPROXIMATION BY A CLASS OF BERNSTEIN-DURRMEYER OPERATORS PRESERVING LINEAR FUNCTIONS [J].
Gonska, Heiner ;
Paltanea, Radu .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) :783-799
[5]   APPROXIMATION THEOREMS FOR THE ITERATED BOOLEAN SUMS OF BERNSTEIN OPERATORS [J].
GONSKA, HH ;
ZHOU, XL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 53 (01) :21-31
[6]  
Kacso D., 2014, J APPL FUNCT ANAL, V9, P335
[7]  
Lupas A., 1972, THESIS U STUTTGART S
[8]  
Mastroianni G., 1977, Rend. dell'Accad. di Scienze Fis. e Mat. Napoli (Serie IV), V44, P151
[9]  
Mastroianni G, 1978, REND ACAD SCI MFN 4, V45, P495
[10]  
Mastroianni G, 2008, SPRINGER MONOGR MATH, P1