Embeddings of rearrangement invariant spaces that are not strictly singular

被引:7
作者
Montgomery-Smith, SJ [1 ]
Semenov, EM
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Voronezh State Univ, Dept Math, Voronezh 394693, Russia
关键词
rearrangement invariant space; strictly singular mapping; Rademacher function; Orlicz space;
D O I
10.1023/A:1009825521243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give partial answers to the following conjecture: the natural embedding of a rearrangement invariant space E into L-1([0,1]) is strictly singular if and only if G does not embed into E continuously, where G is the closure of the simple functions in the Orlicz space L-Phi with Phi>(*) over bar * (x) = exp(x(2))-1.
引用
收藏
页码:397 / 402
页数:6
相关论文
共 9 条
[1]  
[Anonymous], ANAL MATH, DOI 10.1007/BF01930966
[2]  
DELAMO AG, DISJOINTLY STRICTLY
[3]   REPRESENTATIONS OF OPERATORS BETWEEN FUNCTION-SPACES [J].
KALTON, NJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (05) :639-665
[4]  
Krein S. G., 1982, TRANSLATIONS MATH MO, V54
[5]  
Lindenstrauss J., 1979, ERGEB MATH GRENZGEB, V97
[6]  
MILMAN VD, 1986, LECT NOTES MATH, V1200, P1
[7]  
MONTGOMERYSMITH SJ, 1998, 25 YEARS VORONEZH WI, V184, P157
[8]   Singularities of embedding operators between symmetric function spaces on [0,1] [J].
Novikov, SY .
MATHEMATICAL NOTES, 1997, 62 (3-4) :457-468
[9]  
Rudin W., 1973, MCGRAW HILL SERIES H