Graphene nanoplatelet reinforced boron carbide composites with high electrical and thermal conductivity

被引:66
作者
Tan, Yongqiang [1 ]
Luo, Heng [1 ]
Zhang, Haibin [1 ]
Peng, Shuming [1 ]
机构
[1] China Acad Engn Phys, Inst Nucl Phys & Chem, Innovat Res Team Adv Ceram, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
Boron carbide; Graphene; Electrical conductivity; Thermal conductivity; Mechanical property; WALLED CARBON NANOTUBES; EPOXY COMPOSITES; GRAPHITE NANOPLATELET; NITRIDE COMPOSITES; LAYER GRAPHENE; PERCOLATION; CERAMICS; OXIDE; NANOCOMPOSITES; REDUCTION;
D O I
10.1016/j.jeurceramsoc.2016.04.036
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Monolithic B4C ceramics suffer from poor machinability, high brittleness and low thermal conductivity. Here we intend to tackle these problems by incorporating graphene nanoplatelet (GNP) into B4C matrix. Dense B4C/GNPs composites containing 0-5 vol% GNPs were fabricated by hot-pressing using Ti3AlC2 as sintering aid. The electrical conductivity increased dramatically with the incorporation of GNPs, enhancing the machinability of B4C composite remarkably by allowing electrical discharge machining. The establishment of a conducting network was revealed by conducting scanning force microscopy and a synergistic enhancement effect by conducting TiB2 particles produced by reactions between B4C and Ti3AlC2 and GNPs was responsible for the low percolation threshold. The GNPs also provided a good thermal transport channel and the thermal conductivity perpendicular to hot-pressing direction was significantly enhanced. Improvements on strength and fracture toughness by addition of GNPs were observed, and the mechanisms for the improvements include crack deflection and pull-out of GNPs. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2679 / 2687
页数:9
相关论文
共 61 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[3]   Effect of titanium carbide addition on the thermoelectric properties of B4C ceramics [J].
Cai, KF ;
Nan, CW ;
Paderno, Y ;
McLachlan, DS .
SOLID STATE COMMUNICATIONS, 2000, 115 (10) :523-526
[4]   Electrically conductive aluminosilicate/graphene nanocomposite [J].
Capkova, Pavia ;
Matejka, Vlastimil ;
Tokarsky, Jonas ;
Peikertova, Pavlina ;
Neuwirthova, Lucie ;
Kulhankova, Lenka ;
Beno, Jaroslav ;
Styskala, Vitezslav .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (12) :3111-3117
[5]   Graphene for tough and electroconductive alumina ceramics [J].
Centeno, A. ;
Rocha, V. G. ;
Alonso, B. ;
Fernandez, A. ;
Gutierrez-Gonzalez, C. F. ;
Torrecillas, R. ;
Zurutuza, A. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (15-16) :3201-3210
[6]   Use of exfoliated graphite filler to enhance polymer physical properties [J].
Debelak, Bryan ;
Lafdi, Khalid .
CARBON, 2007, 45 (09) :1727-1734
[7]   Boron Carbide: Structure, Properties, and Stability under Stress [J].
Domnich, Vladislav ;
Reynaud, Sara ;
Haber, Richard A. ;
Chhowalla, Manish .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (11) :3605-3628
[8]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[9]   Preparation and electrical properties of graphene nanosheet/Al2O3 composites [J].
Fan, Yuchi ;
Wang, Lianjun ;
Li, Jianlin ;
Li, Jiaqi ;
Sun, Shikuan ;
Chen, Feng ;
Chen, Lidong ;
Jiang, Wan .
CARBON, 2010, 48 (06) :1743-1749
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)