Two-photon absorption (TPA) provides the ability to confine photochemical and physical reactions to the order of laser wavelength, in three dimensions. For applying TPA to laser precision microfabrication, we proposed a two-photon photopolymerization technique, by which photonic crystals and various micromachines with near-diffraction-limit features have been produced. Here we show that the diffraction limit was exceeded by utilizing nonlinear laser-matter interaction processes, and spatial resolutions far smaller than the diffraction limit were achieved. The super resolution, combined with other technologies newly developed by us including three-dimensional imaging of voxels, rapid surface profile scanning, device functionalization and its mechanical driving with a laser trapping force, and dye-doping polymerization for three-dimensional microdiagnosis, makes the technique quite compelling for nanophotonic and optical microelectromechanical (MEMS) applications.