A Locally Adaptable Iterative RX Detector

被引:71
作者
Taitano, Yuri P. [1 ]
Geier, Brian A. [1 ]
Bauer, Kenneth W., Jr. [1 ]
机构
[1] USAF, Inst Technol, Wright Patterson AFB, OH 45433 USA
关键词
ANOMALY DETECTION; TARGET DETECTION; CLASSIFICATION; RECOGNITION;
D O I
10.1155/2010/341908
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an unsupervised anomaly detection method for hyperspectral imagery (HSI) based on data characteristics inherit in HSI. A locally adaptive technique of iteratively refining the well-known RX detector (LAIRX) is developed. The technique is motivated by the need for better first- and second-order statistic estimation via avoidance of anomaly presence. Overall, experiments show favorable Receiver Operating Characteristic (ROC) curves when compared to a global anomaly detector based upon the Support Vector Data Description (SVDD) algorithm, the conventional RX detector, and decomposed versions of the LAIRX detector. Furthermore, the utilization of parallel and distributed processing allows fast processing time making LAIRX applicable in an operational setting.
引用
收藏
页数:10
相关论文
共 25 条
[1]  
Banerjee A, 2007, IEEE IMAGE PROC, P1797
[2]   A support vector method for anomaly detection in hyperspectral imagery [J].
Banerjee, Amit ;
Burlina, Philippe ;
Diehl, Chris .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08) :2282-2291
[3]   Anomaly detection and classification for hyperspectral imagery [J].
Chang, CI ;
Chiang, SS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (06) :1314-1325
[4]   An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery [J].
Chang, CI ;
Ren, H .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (02) :1044-1063
[5]  
DI W, 2006, P 8 INT C SIGN PROC, V3
[6]  
Gaucel J.M., 2005, Proc. IEEE International Conference on Acoustics, Speech, V5, P333
[7]  
GU Y, 2006, P IEEE INT C AC SPEE, V2, P725
[8]   Unmixing component analysis for anomaly detection in hyperspectral imagery [J].
Gu, Yanfeng ;
Ye, Zhang ;
Ying, Liu .
2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, :965-+
[9]  
HSUEH M, 2004, P IEEE INT GEOSC REM, V5, P3222
[10]  
Liu W., 2008, Proceedings of IEEE International Geoscience and Remote Sensing Symposium, V2, P41