Simulating single-particle dynamics in magnetized plasmas: The RMF code

被引:2
|
作者
Glasser, A. H. [1 ]
Cohen, S. A. [2 ]
机构
[1] Fus Theory & Computat Inc, 24062 Seatter Lane Nebraska, Washington, DC 98346 USA
[2] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2022年 / 93卷 / 08期
关键词
FIELD-REVERSED CONFIGURATION; ORBITS; MODEL; ION;
D O I
10.1063/5.0101665
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The RMF (Rotating Magnetic Field) code is designed to calculate the motion of a charged particle in a given electromagnetic field. It integrates Hamilton's equations in cylindrical coordinates using an adaptive predictor-corrector double-precision variable-coefficient ordinary differential equation solver for speed and accuracy. RMF has multiple capabilities for the field. Particle motion is initialized by specifying the position and velocity vectors. The six-dimensional state vector and derived quantities are saved as functions of time. A post-processing graphics code, XDRAW, is used on the stored output to plot up to 12 windows of any two quantities using different colors to denote successive time intervals. Multiple cases of RMF may be run in parallel and perform data mining on the results. Recent features are a synthetic diagnostic for simulating the observations of charge-exchange-neutral energy distributions and RF grids to explore a Fermi acceleration parallel to static magnetic fields.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Consistent description for cluster dynamics and single-particle correlation
    Itagaki, Naoyuki
    Naito, Tomoya
    PHYSICAL REVIEW C, 2021, 103 (04)
  • [42] Report of the working group on single-particle nonlinear dynamics
    Bazzani, A
    Bongini, L
    Corbett, J
    Dome, G
    Fedorova, A
    Freguglia, P
    Ng, K
    Ohmi, K
    Owen, H
    Papaphilippou, Y
    Robin, D
    Safranek, J
    Scandale, W
    Terebilo, A
    Turchetti, G
    Todesco, E
    Warnock, R
    Zeitlin, M
    NONLINEAR AND COLLECTIVE PHENOMENA IN BEAM PHYSICS 1998 WORKSHOP, 1999, 468 : 3 - 10
  • [43] IMPLICIT PARTICLE SIMULATION OF MAGNETIZED PLASMAS
    BARNES, DC
    KAMIMURA, T
    LEBOEUF, JN
    TAJIMA, T
    JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 52 (03) : 480 - 502
  • [44] Particle Acceleration in Relativistic Magnetized Plasmas
    Edison Liang
    Astrophysics and Space Science, 2005, 298 : 211 - 218
  • [45] Intracellular transport dynamics revealed by single-particle tracking
    Ming-Li Zhang
    Hui-Ying Ti
    Peng-Ye Wang
    Hui Li
    BiophysicsReports, 2021, 7 (05) : 413 - 427
  • [46] Fully resolved simulation of single-particle dynamics in a microcavity
    Maoqiang Jiang
    Shizhi Qian
    Zhaohui Liu
    Microfluidics and Nanofluidics, 2018, 22
  • [47] Wigglers and single-particle dynamics in the NLC damping rings
    Venturini, M
    Wolski, A
    Dragt, A
    PROCEEDINGS OF THE 2003 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, 2003, : 2772 - 2774
  • [48] SINGLE-PARTICLE DYNAMICS OF LIQUID CARBON-DISULFIDE
    STEINHAUSER, O
    CHEMICAL PHYSICS LETTERS, 1981, 82 (01) : 153 - 157
  • [49] COOPERATIVE EFFECTS ON THE SINGLE-PARTICLE DYNAMICS IN SIMPLE LIQUIDS
    BALUCANI, U
    GORI, M
    VALLAURI, R
    CHEMICAL PHYSICS LETTERS, 1985, 119 (2-3) : 152 - 156