Simulating single-particle dynamics in magnetized plasmas: The RMF code

被引:2
|
作者
Glasser, A. H. [1 ]
Cohen, S. A. [2 ]
机构
[1] Fus Theory & Computat Inc, 24062 Seatter Lane Nebraska, Washington, DC 98346 USA
[2] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2022年 / 93卷 / 08期
关键词
FIELD-REVERSED CONFIGURATION; ORBITS; MODEL; ION;
D O I
10.1063/5.0101665
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The RMF (Rotating Magnetic Field) code is designed to calculate the motion of a charged particle in a given electromagnetic field. It integrates Hamilton's equations in cylindrical coordinates using an adaptive predictor-corrector double-precision variable-coefficient ordinary differential equation solver for speed and accuracy. RMF has multiple capabilities for the field. Particle motion is initialized by specifying the position and velocity vectors. The six-dimensional state vector and derived quantities are saved as functions of time. A post-processing graphics code, XDRAW, is used on the stored output to plot up to 12 windows of any two quantities using different colors to denote successive time intervals. Multiple cases of RMF may be run in parallel and perform data mining on the results. Recent features are a synthetic diagnostic for simulating the observations of charge-exchange-neutral energy distributions and RF grids to explore a Fermi acceleration parallel to static magnetic fields.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Vortex dynamics in magnetized plasmas
    Kono, M
    Krane, B
    Pecseli, HL
    Trulsen, J
    PHYSICA SCRIPTA, 1998, 58 (03): : 238 - 245
  • [32] CLASSICAL SINGLE-PARTICLE DYNAMICS OF THE ANOMALOUS DOPPLER RESONANCE
    DENDY, RO
    PHYSICS OF FLUIDS, 1987, 30 (08) : 2438 - 2441
  • [33] Report of the working group on single-particle nonlinear dynamics
    Axinescu, S
    Bartolini, R
    Bazzani, A
    Biagini, M
    Chao, A
    Dragt, A
    Ellison, J
    FausGolfe, A
    Freguglia, P
    Hirata, K
    Ng, K
    Oide, K
    Ritson, D
    Schmidt, F
    Scandale, W
    Tazzari, S
    Todesco, E
    Turchetti, G
    Verolino, L
    Wan, W
    Warnock, R
    Yan, Y
    NONLINEAR AND COLLECTIVE PHENOMENA IN BEAM PHYSICS, 1997, (395): : 3 - 10
  • [34] Single-particle tracking: Brownian dynamics of viscoelastic materials
    Qian, H
    BIOPHYSICAL JOURNAL, 2000, 79 (01) : 137 - 143
  • [35] Turbulent particle transport in magnetized plasmas
    Garbet, X
    Garzotti, L
    Mantica, P
    Nordman, H
    Valovic, M
    Weisen, H
    Angioni, C
    PHYSICAL REVIEW LETTERS, 2003, 91 (03)
  • [36] Theory for the single-particle dynamics in glassy mixtures with particle size swaps
    Szamel, Grzegorz
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (10):
  • [37] From Single-Particle to Collective Dynamics in Supercooled Liquids
    Matyushov, Dmitry V. V.
    Richert, Ranko
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (20): : 4886 - 4891
  • [38] Single-particle dynamics in theoretical minimum emittance cell
    Cai, Yunhai
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2018, 21 (11):
  • [39] Density fluctuations and single-particle dynamics in liquid lithium
    Casas, J
    González, DJ
    González, LE
    Alemany, MMG
    Gallego, LJ
    PHYSICAL REVIEW B, 2000, 62 (18) : 12095 - 12106
  • [40] FLUCTUATIONS OF THE SINGLE-PARTICLE DENSITY IN NUCLEAR-DYNAMICS
    BURGIO, GF
    CHOMAZ, P
    RANDRUP, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 202 : 9 - NUCL