Automatic retrieval of microscopic blood cells images

被引:0
|
作者
Selvanathan, N. [1 ]
Yun, Lee Shi [1 ]
Sankupellay, Mangalam [1 ]
Purushothaman, V. [2 ]
Jameelah, S. [2 ]
机构
[1] Univ Malaya, Kuala Lumpur, Malaysia
[2] Gen Hosp, Kuala Lumpur, Malaysia
来源
3RD KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2006 | 2007年 / 15卷
关键词
content based image retrieval; blood cell images;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The research explores various methods to retrieve microscopic blood cell image on the basis of features automatically extracted from the image. The query image is selected from a large collection of blood cell image. After the region of interest is selected from the image, Query by Image Content (QBIC) catalog is used to measure the low level attributed of the query image such as average color, histogram color, positional color and texture. The low level attributes are used to find matching image in the DB2 (DataBase 2 by IBM) database. The most accurate and relevant blood cell images are retrieved along with the description of the blood disorder.
引用
收藏
页码:245 / +
页数:3
相关论文
共 50 条
  • [1] Semi-Automatic Red Blood Cells Counting in Microscopic Digital Images
    Abbas, Naveed
    Mohamad, Dzulkifli
    Abdullah, Abdul Hanan
    JURNAL TEKNOLOGI, 2015, 73 (02):
  • [2] Automatic Classification of Bacterial Cells in Digital Microscopic Images
    Hiremath, P. S.
    Bannigidad, Parashuram
    SECOND INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, 2010, 7546
  • [3] Automatic Counting Red Blood Cells in the Microscopic Images by EndPoints Method and Circular Hough Transform
    Aslani, Amir Aslan
    Zolfaghari, Mohammad
    Sajedi, Hedieh
    PROCEEDINGS OF THE 2022 16TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2022), 2022,
  • [4] Automatic Detection of Tumor Cells in Microscopic Images of Unstained Blood using Convolutional Neural Networks
    Mocan, Ioana
    Ian, Razvan
    Ciurte, Anca
    Danescu, Radu
    Buiga, Rares
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2018, : 319 - 324
  • [5] Automatic detection of Plasmodium parasites from microscopic blood images
    Fatima T.
    Farid M.S.
    Journal of Parasitic Diseases, 2020, 44 (1) : 69 - 78
  • [6] Automatic Detection of Malarial Parasite Using Microscopic Blood Images
    Razzak, Muhammad Imran
    Alhaqbani, Bandar
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2015, 5 (03) : 591 - 598
  • [7] Automatic analysis of microscopic images of red blood cell aggregates
    Menichini, Pablo A.
    Larese, Monica G.
    Riquelme, Bibiana D.
    BIOPHOTONICS SOUTH AMERICA, 2015, 9531
  • [8] An Efficient Algorithm for Automatic Malaria Detection in Microscopic Blood Images
    Somasekar, J.
    Reddy, A. Rama Mohan
    Reddy, L. Sreenivasulu
    GLOBAL TRENDS IN INFORMATION SYSTEMS AND SOFTWARE APPLICATIONS, PT 2, 2012, 270 : 431 - +
  • [9] Automatic Detection of White Blood Cells from Microscopic Images for Malignancy Classification of Acute Lymphoblastic Leukemia
    Rahman, Ashikur
    Hasan, Md. Mehedi
    2018 INTERNATIONAL CONFERENCE ON INNOVATION IN ENGINEERING AND TECHNOLOGY (ICIET), 2018,
  • [10] Automatic detection of circulating tumor cells in darkfield microscopic images of unstained blood using boosting techniques
    Ciurte, Anca
    Selicean, Cristina
    Soritau, Olga
    Buiga, Rares
    PLOS ONE, 2018, 13 (12):