Calcium phosphate coating of Ti-Nb-Zr-Sn titanium alloy

被引:46
作者
Zheng, C. Y.
Li, S. J.
Tao, X. J.
Hao, Y. L.
Yang, R.
Zhang, L.
机构
[1] Chinese Acad Sci, Met Res Inst, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] China Med Univ, Affiliated Hosp 2, Dept Stomatol, Shenyang 110004, Peoples R China
来源
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS | 2007年 / 27卷 / 04期
基金
中国国家自然科学基金;
关键词
biomedical titanium alloys; surface treatment; calcium phosphate coating; dissolution; osteoblast adhesion and proliferation;
D O I
10.1016/j.msec.2006.09.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study focuses on rapid formation of calcium phosphate coating on a beta type Ti-Nb-Zr-Sn biomedical titanium alloy by alkali treatment. The results show that a bioconductive surface layer forms on specimens immersed in 1-5 M KOH solution but only treatment in 1 M KOH avoids formation of crevices, producing a potassium titanate layer with porous network structure. Heat treatment at 600 degrees C after the alkali treatment promotes titanate growth. Following the above treatments, a continuous apatite layer forms within 4 h of soaking in a calcium phosphate solution with high ionic concentration. Such rapid apatite formation is due to high concentration of calcium ions in the solution used in this study and the buffering function of NaHCO3. Results of dissolution experiment show that Ca and P ions release gradually from the coating during soaking in a 0.9% NaCl solution, which may be helpful to the formation of natural bone if implanted in human body. Cell culture experiment shows that the apatite layer favours adhesion and proliferation of rat osteoblast as compared with coating-free Ti-Nb-Zr-Sn alloy and commercially pure titanium (CP Ti). (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:824 / 831
页数:8
相关论文
共 39 条
[1]   Osteoblast adhesion on biomaterials [J].
Anselme, K .
BIOMATERIALS, 2000, 21 (07) :667-681
[2]   Influence of ionic strength and carbonate on the Ca-P coating formation from SBFx5 solution [J].
Barrere, F ;
van Blitterswijk, CA ;
de Groot, K ;
Layrolle, P .
BIOMATERIALS, 2002, 23 (09) :1921-1930
[3]   Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method [J].
Bigi, A ;
Boanini, E ;
Bracci, B ;
Facchini, A ;
Panzavolta, S ;
Segatti, F ;
Sturba, L .
BIOMATERIALS, 2005, 26 (19) :4085-4089
[4]   INHIBITION OF APATITE FORMATION BY TITANIUM AND VANADIUM IONS [J].
BLUMENTHAL, NC ;
COSMA, V .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH-APPLIED BIOMATERIALS, 1989, 23 (A1) :13-22
[5]  
Brunette DM, 2001, TITANIUM MED MAT SCI, P25
[6]   INFLUENCE OF SURFACE CHARACTERISTICS ON BONE INTEGRATION OF TITANIUM IMPLANTS - A HISTOMORPHOMETRIC STUDY IN MINIATURE PIGS [J].
BUSER, D ;
SCHENK, RK ;
STEINEMANN, S ;
FIORELLINI, JP ;
FOX, CH ;
STICH, H .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1991, 25 (07) :889-902
[7]   Dissolution behaviour of calcium phosphate coatings obtained by laser ablation [J].
Clèries, L ;
Fernández-Pradas, JM ;
Sardin, G ;
Morenza, JL .
BIOMATERIALS, 1998, 19 (16) :1483-1487
[8]   Surface mineralisation of hydroxyapatite in modified simulated body fluid (mSBF) with higher amounts of hydrogencarbonate ions [J].
Dorozhkina, EI ;
Dorozhkin, SV .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2002, 210 (01) :41-48
[9]   Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment [J].
Feng, QL ;
Wang, H ;
Cui, FZ ;
Kim, TN .
JOURNAL OF CRYSTAL GROWTH, 1999, 200 (3-4) :550-557
[10]   Growth of bioactive surfaces on titanium and its alloys for orthopaedic and dental implants [J].
Gil, FJ ;
Padrós, A ;
Manero, JM ;
Aparicio, C ;
Nilsson, M ;
Planell, JA .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2002, 22 (01) :53-60