Supercongruences on some binomial sums involving Lucas sequences

被引:5
作者
Mao, Guo-Shuai [1 ]
Pan, Hao [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Pell number; Central binomial coefficient; Congruence; HYPERGEOMETRIC-SERIES; CONGRUENCES; CONJECTURE;
D O I
10.1016/j.jmaa.2016.10.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we confirm several conjectured congruences of Sun concerning the divisibility of binomial sums. For example, with help of a quadratic hypergeometric transformation, we prove that (p-1)Sigma(k=0) [GRAPHICS] (2) P-k/8(k) = 0 (mod p(2)) for any prime p = 7 (mod 8), where P-k is the k-th Pell number. Further, we also propose three new congruences of the same type. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1061 / 1078
页数:18
相关论文
共 22 条
[1]  
Andrews G., 1990, SPECIAL FUNCTIONS
[2]  
[Anonymous], 2010, Handbook of Mathematical Functions
[3]  
Graham Ronald L., 1994, Concrete Mathematics: A Foundation For Computer Science, V2nd
[4]  
Granville A., 1997, CMS C P, P253
[5]   Some q-analogues of supercongruences of Rodriguez-Villegas [J].
Guo, Victor J. W. ;
Zeng, Jiang .
JOURNAL OF NUMBER THEORY, 2014, 145 :301-316
[6]   On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson [J].
Lehmer, E .
ANNALS OF MATHEMATICS, 1938, 39 :350-360
[7]   HYPERGEOMETRIC EVALUATION IDENTITIES AND SUPERCONGRUENCES [J].
Long, Ling .
PACIFIC JOURNAL OF MATHEMATICS, 2011, 249 (02) :405-418
[8]   Congruences for central binomial sums and finite polylogarithms [J].
Mattarei, Sandro ;
Tauraso, Roberto .
JOURNAL OF NUMBER THEORY, 2013, 133 (01) :131-157
[9]   ON A SUPERCONGRUENCE CONJECTURE OF RODRIGUEZ-VILLEGAS [J].
McCarthy, Dermot .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (07) :2241-2254
[10]  
Morley F., 1895, Ann. Math, V9, P168, DOI DOI 10.2307/1967516