Trace formula and new form of N-soliton to the Gerdjikov-Ivanov equation

被引:27
作者
Nie, Hui [1 ]
Zhu, Junyi [1 ]
Geng, Xianguo [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Gerdjikov-Ivanov equation; Riemann-Hilbert approach; trace formula; soliton; NONLINEAR SCHRODINGER-EQUATION; RIEMANN-HILBERT PROBLEM; DARBOUX TRANSFORMATION; SIMILARITY REDUCTION; SYSTEMS;
D O I
10.1007/s13324-017-0179-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Gerdjikov-Ivanov equation is investigated by the Riemann-Hilbert approach and the technique of regularization. The trace formula and new form of N-soliton solution are given. The dynamics of the stationary solitons and non-stationary solitons are discussed.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 31 条
[1]  
Ablowitz M.J., 2003, Complex Variables
[2]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[3]   LINEAR SPECTRAL PROBLEMS, NON-LINEAR EQUATIONS AND THE DELTA-BAR-METHOD [J].
BEALS, R ;
COIFMAN, RR .
INVERSE PROBLEMS, 1989, 5 (02) :87-130
[4]   INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD [J].
CHEN, HH ;
LEE, YC ;
LIU, CS .
PHYSICA SCRIPTA, 1979, 20 (3-4) :490-492
[5]   Variable separation and algebro-geometric solutions of the Gerdjikov-lvanov equation [J].
Dai, HH ;
Fan, EG .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :93-101
[6]  
Doktorov E.V., 2007, SOLITONS NONLINEAR E
[7]  
Faddeev L. D., 1987, Hamiltonian methods in the theory of solitons, V23
[8]   Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation [J].
Fan, EG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (39) :6925-6933
[9]   Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation [J].
Fan, EG .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) :7769-7782
[10]  
Fan EG, 2001, COMMUN THEOR PHYS, V35, P651