Pancyclicity of Hamiltonian and highly connected graphs

被引:9
|
作者
Keevash, Peter [1 ]
Sudakov, Benny [2 ]
机构
[1] Univ London, Sch Math Sci, London E1 4NS, England
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Graphs; Cycles; Hamiltonian; Pancyclic; CYCLE LENGTHS;
D O I
10.1016/j.jctb.2010.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A celebrated theorem of Chvatal and Erdos says that G is Hamiltonian if kappa(G) >= alpha(G), where kappa(G) denotes the vertex connectivity and alpha(G) the independence number of G. Moreover, Bondy suggested that almost any non-trivial conditions for Hamiltonicity of a graph should also imply pancyclicity. Motivated by this, we prove that if kappa(G) >= 600 alpha(G) then G is pancyclic. This establishes a conjecture of Jackson and Ordaz up to a constant factor. Moreover, we obtain the more general result that if G is Hamiltonian with minimum degree delta(G) >= 600 alpha(G) then G is pancyclic. Improving an old result of Erdos, we also show that G is pancyclic if it is Hamiltonian and n >= 150 alpha(G)(3). Our arguments use the following theorem of independent interest on cycle lengths in graphs: if delta(G) >= 300 alpha(G) then G contains a cycle of length l for all 3 <= l <= delta(G)/81. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:456 / 467
页数:12
相关论文
共 50 条
  • [41] Pancyclicity mod k of claw-free graphs and K1,4-free graphs
    Cai, XT
    Shreve, WE
    DISCRETE MATHEMATICS, 2001, 230 (1-3) : 113 - 118
  • [42] Hamiltonian (s, t)-paths in solid supergrid graphs
    Keshavarz-Kohjerdi, Fatemeh
    Bagheri, Alireza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03):
  • [43] Graphs with connected medians
    Bandelt, HJ
    Chepoi, V
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (02) : 268 - 282
  • [44] Hamiltonian Graphs as Harmonic Tools
    Albini, Giovanni
    Bernardi, Marco Paolo
    MATHEMATICS AND COMPUTATION IN MUSIC, MCM 2017, 2017, 10527 : 215 - 226
  • [45] HAMILTONIAN NORMAL CAYLEY GRAPHS
    Jose Montellano-Ballesteros, Juan
    Santiago Arguello, Anahy
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (03) : 731 - 740
  • [46] On computing the Hamiltonian index of graphs
    Philip, Geevarghese
    Rani, M. R.
    Subashini, R.
    THEORETICAL COMPUTER SCIENCE, 2023, 940 : 149 - 179
  • [47] Sparse Kneser Graphs Are Hamiltonian
    Muetze, Torsten
    Nummenpalo, Jerri
    Walczak, Bartosz
    STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 912 - 919
  • [48] Quantized consensus in Hamiltonian graphs
    Franceschelli, Mauro
    Giua, Alessandro
    Seatzu, Carla
    AUTOMATICA, 2011, 47 (11) : 2495 - 2503
  • [49] The Hamiltonian properties of supergrid graphs
    Hung, Ruo-Wei
    Yao, Chih-Chia
    Chan, Shang-Ju
    THEORETICAL COMPUTER SCIENCE, 2015, 602 : 132 - 148
  • [50] Hamiltonian paths in Cayley graphs
    Pak, Igor
    Radoicic, Rados
    DISCRETE MATHEMATICS, 2009, 309 (17) : 5501 - 5508