Fluctuating metrics in one-dimensional manifolds

被引:2
作者
Mendoza, R [1 ]
Gomez, P [1 ]
Moraes, F [1 ]
机构
[1] UNIV FED PERNAMBUCO,DEPT FIS,BR-50670901 RECIFE,PE,BRAZIL
关键词
D O I
10.1063/1.531942
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we address the statistical mechanics of fluctuating metrics in two, simple, one-dimensional, manifolds: the unit interval and the unit circle. Faddeev-Popov and zeta-function regularization are used to compute explicitly the partition function without the need of any extra fields in the case of the interval. The addition of bosonic fields to the fluctuating metric background is necessary in order to accomplish complete regularization in the case of the circle. (C) 1997 American Institute of Physics.
引用
收藏
页码:5293 / 5300
页数:8
相关论文
共 8 条
[1]  
[Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
[2]   DIFFERENTIAL GEOMETRY ON THE SPACE OF CONNECTIONS VIA GRAPHS AND PROJECTIVE-LIMITS [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF GEOMETRY AND PHYSICS, 1995, 17 (03) :191-230
[3]  
Elizalde E., 1994, Zeta Regularization Techniques with Applications
[4]  
Polyakov A., 1987, GAUGE FIELDS STRINGS
[5]   QUANTUM GEOMETRY OF FERMIONIC STRINGS [J].
POLYAKOV, AM .
PHYSICS LETTERS B, 1981, 103 (03) :211-213
[6]   QUANTUM GEOMETRY OF BOSONIC STRINGS [J].
POLYAKOV, AM .
PHYSICS LETTERS B, 1981, 103 (03) :207-210
[7]  
Ryder L.H., 1985, QUANTUM FIELD THEORY, DOI DOI 10.1017/CBO9780511813900
[8]  
Spivak M., 1965, Calculus on Manifolds