Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces

被引:156
作者
Popescu, Ovidiu [1 ]
机构
[1] Transilvania Univ, Dept Math & Comp Sci, Brasov 505801, Romania
关键词
PROXIMITY POINTS;
D O I
10.1186/1687-1812-2014-190
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the results obtained in Cho et al. (Fixed Point Theory Appl. 2013:329, 2013) and give other conditions to prove the existence and uniqueness of a fixed point of alpha-Geraghty contraction type maps in the context of a complete metric space.
引用
收藏
页数:12
相关论文
共 24 条
[1]   Generalized contractions in partially ordered metric spaces [J].
Agarwal, Ravi P. ;
El-Gebeily, M. A. ;
O'Regan, Donal .
APPLICABLE ANALYSIS, 2008, 87 (01) :109-116
[2]   A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations [J].
Amini-Harandi, A. ;
Emami, H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) :2238-2242
[3]   Best proximity points of generalized almost ψ-Geraghty contractive non-self-mappings [J].
Aydi, Hassen ;
Karapinar, Erdal ;
Erhan, Inci M. ;
Salimi, Peyman .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[4]  
Banach S., 1922, Fund. Math., V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[5]   A generalization for the best proximity point of Geraghty-contractions [J].
Bilgili, Nurcan ;
Karapinar, Erdal ;
Sadarangani, Kishin .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[6]   A best proximity point theorem for Geraghty-contractions [J].
Caballero, J. ;
Harjani, J. ;
Sadarangani, K. .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[7]   Geraghty-type theorems in modular metric spaces with an application to partial differential equation [J].
Chaipunya, Parin ;
Cho, Yeol Je ;
Kumam, Poom .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[8]   Fixed point theorems for α-Geraghty contraction type maps in metric spaces [J].
Cho, Seong-Hoon ;
Bae, Jong-Sook ;
Karapinar, Erdal .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[9]   Common fixed point theorems for mappings satisfying property (E.A) on cone metric spaces [J].
Cho, Seong-Hoon ;
Bae, Jong-Sook .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) :945-951
[10]   CONTRACTIVE MAPPINGS [J].
GERAGHTY, MA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (02) :604-608