Bimolecular evaluation of three contrasting rice cultivars (Oryza sativa L.) in salt stress response at seedling stage

被引:6
|
作者
Ngoc, Nam Trinh [1 ]
Tri, Phuong Nguyen [1 ]
Le Hong, Thia [2 ]
Quoc, Cuong Duong [1 ,3 ]
机构
[1] Ind Univ Ho Chi Minh City, Inst Biotechnol & Food Technol, Ho Chi Minh City 700000, Vietnam
[2] Ind Univ Ho Chi Minh City, Inst Environm Sci Engn & Management, Ho Chi Minh City 700000, Vietnam
[3] Vietnam Natl Univ, Univ Sci, Fac Biol & Biotechnol, Dept Biotechnol, Ho Chi Minh City 700000, Vietnam
来源
PLANT SCIENCE TODAY | 2022年 / 9卷 / 02期
关键词
ROS; quantitative real-time PCR; rice (Oryza sativa L.); isozyme; salt tolerance; Na+-transporter gene; LIPID-PEROXIDATION; GENE-EXPRESSION; ANTIOXIDANT DEFENSE; HKT TRANSPORTERS; OXIDATIVE STRESS; ACTIVE OXYGEN; TOLERANT; SODIUM; GLYCINEBETAINE; PROLINE;
D O I
10.14719/pst.1539
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salt contamination of soils due to climate change faces a severe environmental issue that affects crop production today. However, the response mechanism in plants to salt stress is not fully understood. The present study investigated molecular and biochemical changes under salt stress in rice seedlings of three rice cultivars, i.e., AGPPS114 (salt-tolerant), OM6967 (moderately tolerance), VD20 (salt-sensitive). Increasing salt concentration leads to a reduction in shoot/root length but different levels among the cultivars. In contrast, reactive oxygen species (ROS) accumulation and lipid peroxidation increased progressively with increasing salt concentration and time course treatment. However, at 250 mu M of NaCl, these parameters were more adversely affected in VD20 than AGPPS114 and OM6967. Using ICP showed that Na+ accumulation in rice root increased gradually with increasing NaCl concentrations in all cultivars under salt treatment but was low in salt-sensitive cultivar VD20 compared to other cultivars. Antioxidant enzyme activity analysis indicated catalase (CAT) and superoxide dismutase (SOD) were induced during salt treatment in all cultivars. The results also showed greater proline and glycine betaine accumulation in the AGPPS114 than OM6976 and VD20. qPCR indicated a significant difference in transcript levels of the Na+-transporter gene OsSOS1, OsNHX1 and OsHKT1s in AGPPS114 and OM6967 cultivars compared to VD20 cultivar. In summary, the active regulation of genes related to Na+ transport at the transcription level and with high glycine betaine and proline accumulation levels may be involved in salt tolerance mechanisms and thus might be useful for selecting tolerant plants.
引用
收藏
页码:491 / 503
页数:13
相关论文
共 50 条
  • [1] Differential biochemical and metabolic responses of contrasting rice cultivars (Oryza sativa L.) under salt stress
    Duong, Cuong Quoc
    Bui, Anh Lan
    Le, Thia Hong
    Tran, Truc Thanh
    Trinh, Nam Ngoc
    ACTA AGROBOTANICA, 2023, 76
  • [2] Differential biochemical and metabolic responses of contrasting rice cultivars (Oryza sativa L.) under salt stress
    Duong, Cuong Quoc
    Bui, Anh Lan
    Le, Thia Hong
    Tran, Truc Thanh
    Trinh, Nam Ngoc
    ACTA AGROBOTANICA, 2023, 76
  • [3] Comparative effects of chloride and sulfate salinities on two contrasting rice cultivars (Oryza sativa L.) at the seedling stage
    Irakoze, Willy
    Vanpee, Brigitte
    Rufyikiri, Gervais
    Dailly, Helene
    Nijimbere, Severin
    Lutts, Stanley
    JOURNAL OF PLANT NUTRITION, 2019, 42 (09) : 1001 - 1015
  • [4] Response of rice (Oryza sativa L.) cultivars to elevated ozone stress
    Ramya, Ambikapathi
    Dhevagi, Periyasamy
    Priyatharshini, Sengottiyan
    Saraswathi, R.
    Avudainayagam, S.
    Venkataramani, S.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (12)
  • [5] Exogenously Applied Nitric Oxide Enhances Salt Tolerance in Rice (Oryza sativa L.) at Seedling Stage
    Adamu, Teferi Alem
    Mun, Bong-Gyu
    Lee, Sang-Uk
    Hussain, Adil
    Yun, Byung-Wook
    AGRONOMY-BASEL, 2018, 8 (12):
  • [6] Evaluation of some biochemical and biomolecular indicators in rice (Oryza sativa L.) during the seedling stage under NaCl stress
    Duong C.Q.
    Bui A.L.
    Trinh N.N.
    Le T.H.
    Tran T.T.
    Tran G.-B.
    Journal of Crop Science and Biotechnology, 2024, 27 (5) : 567 - 584
  • [7] RESPONSE OF RICE (Oryza sativa L.) TO SALINITY STRESS AT GERMINATION AND EARLY SEEDLING STAGES
    Balkan, Alpay
    Genctan, Temel
    Bilgin, Oguz
    Ulukan, Hakan
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2015, 52 (02): : 455 - 461
  • [8] Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage
    Singh, Vijayata
    Singh, Ajit Pal
    Bhadoria, Jyoti
    Giri, Jitender
    Singh, Jogendra
    Vineeth, T. V.
    Sharma, P. C.
    PROTOPLASMA, 2018, 255 (06) : 1667 - 1681
  • [9] Responses of Contrasting Rice (Oryza sativa L.) Genotypes to Salt Stress as Affected by Nutrient Concentrations
    Zhang Zhen-hua
    Liu Qiang
    Song Hai-xing
    Rong Xiang-min
    Ismail, Abdelbagi M.
    AGRICULTURAL SCIENCES IN CHINA, 2011, 10 (02): : 195 - 206
  • [10] Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage
    Aghaee, A.
    Moradi, F.
    Zare-Maivan, H.
    Zarinkamar, F.
    Irandoost, H. Pour
    Sharifi, P.
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (39): : 7617 - 7621