A mathematical analysis of a fish school model

被引:6
作者
Adioui, M
Arino, O
Smith, WV
Treuil, JP
机构
[1] GEODES IRD 32, F-93143 Bondy, France
[2] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
schooling; alignment; diffusion; stability; bifurcation; variance; operator semigroups;
D O I
10.1016/S0022-0396(02)00097-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A model proposed in the literature for fish schools of relatively large size is studied for mathematical and qualitative properties. Existence, uniqueness and positivity of solutions are established and bifurcation properties relative to diffusion and alignment parameters are studied. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:406 / 446
页数:41
相关论文
共 8 条
[1]  
Crandall M.G., 1971, J FUNCT ANAL, V8, P321
[2]  
ENGEL KJ, 2000, ONE PARAMETER SEMIGR
[3]  
Friedman A., 1969, Partial Differential Equations
[4]   Schooling as a strategy for taxis in a noisy environment [J].
Grunbaum, D .
EVOLUTIONARY ECOLOGY, 1998, 12 (05) :503-522
[5]  
Henry D., 1981, GEOMETRIC THEORY SEM
[6]  
IOOSS G, 1979, MATH STUD
[7]  
PAZY A, 1983, APPL MATH SCI, V119
[8]   BIFURCATION FROM INFINITY [J].
RABINOWITZ, PH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (03) :462-475