Blind adaptive equalization method without channel order estimation

被引:0
作者
Kacha, I. [1 ]
Abed-Meraim, K. [1 ]
Belouchrani, A. [1 ]
机构
[1] Telecom Paris, ENST, Dept TSI, F-75014 Paris, France
来源
2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13 | 2006年
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we propose a new blind minimum mean square error (MMSE) equalization algorithm of noisy single-input multiple-outputs finite impulse response (SIMO-FIR) systems, relying only on second order statistics. This algorithm offers an important advantage, a total independence of the channel order. Exploiting the fact that the equalizer filter belongs both, to the signal subspace and to the kernel of truncated data covariance matrix, the algorithm achieves blindly a direct estimation of the zero-delay MMSE equalizer parameters. The proposed approach has several features that are studied in this work. More precisely, we develop a two-step procedure to further improve the performance gain and to control the equalization delay. We present an efficient adaptive implementation of our equalizer, which reduces the computational complexity from O(n(3)) to O(n(2)p), where n is the data vector length and p is the number of sensors. Simulation results are provided to illustrate the effectiveness of the proposed blind equalization algorithm.
引用
收藏
页码:4255 / 4258
页数:4
相关论文
共 13 条
[1]   Fast orthonormal PAST algorithm [J].
Abed-Meraim, K ;
Chkeif, A ;
Hua, Y .
IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (03) :60-62
[2]   A subspace algorithm for certain blind identification problems [J].
AbedMeraim, K ;
Loubaton, P ;
Moulines, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) :499-511
[3]  
ABEDMERAIM K, 1999, INFORMATION DECI FEB, P477
[4]   Efficient, high performance, subspace tracking for time-domain data [J].
Davila, CE .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (12) :3307-3315
[5]  
DOUKOPOULOS XG, 2004, THESIS U RENNES FRAN
[6]   A blind multichannel identification algorithm robust to order overestimation [J].
Gazzah, H ;
Regalia, PA ;
Delmas, JP ;
Abed-Meraim, K .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (06) :1449-1458
[7]   Blind channel order estimation based on second-order statistics [J].
Gerstacker, WH ;
Taylor, DP .
IEEE SIGNAL PROCESSING LETTERS, 2003, 10 (02) :39-42
[8]  
GIANNAKIS GB, 2001, SIGNAL PROCESSING AD, V1
[9]  
KACHA I, 2005, INT SYM PIMRC BERLIN
[10]  
KACHA I, 2004, SAM SIG P WORK BARC, P148