Large time behavior of solutions of viscous Hamilton-Jacobi equations with superquadratic Hamiltonian
被引:32
|
作者:
Tchamba, Thierry Tabet
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tours, Lab Math & Phys Theor, CNRS, UMR 6083,FR 2964, Tours, France
Univ Yaounde I, Dept Math, Yaounde, CameroonUniv Tours, Lab Math & Phys Theor, CNRS, UMR 6083,FR 2964, Tours, France
Tchamba, Thierry Tabet
[1
,2
]
机构:
[1] Univ Tours, Lab Math & Phys Theor, CNRS, UMR 6083,FR 2964, Tours, France
NONLINEAR ELLIPTIC-EQUATIONS;
STRONG MAXIMUM PRINCIPLE;
VISCOSITY SOLUTIONS;
DIRICHLET PROBLEM;
GLOBAL EXISTENCE;
CAUCHY-PROBLEM;
DECAY;
DOMAINS;
D O I:
10.3233/ASY-2009-0965
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study the long-time behavior of the unique viscosity solution u of the viscous Hamilton-Jacobi equation u(t) - Delta u + |Du|(m) = f in Omega x (0,+infinity) with inhomogeneous Dirichlet boundary conditions, where Omega is a bounded domain of R-N. We mainly focus on the superquadratic case (m > 2) and consider the Dirichlet conditions in the generalized viscosity sense. Under rather natural assumptions on f, the initial and boundary data, we connect the problem studied to its associated stationary generalized Dirichlet problem on one hand and to a stationary problem with a state constraint boundary condition on the other hand.
机构:
Chinese Acad Sinica, Acad Math & Syst Sci, Beijing, Peoples R China
Chinese Acad Sinica, Hua Loo Keng Key Lab Math, Beijing, Peoples R China
Univ Chinese Acad Sci, Beijing 100190, Peoples R ChinaChinese Acad Sinica, Acad Math & Syst Sci, Beijing, Peoples R China
Li, Tian-Hong
Wang, Jinghua
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sinica, Acad Math & Syst Sci, Beijing, Peoples R ChinaChinese Acad Sinica, Acad Math & Syst Sci, Beijing, Peoples R China
Wang, Jinghua
Wen, Hairui
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R ChinaChinese Acad Sinica, Acad Math & Syst Sci, Beijing, Peoples R China