Large time behavior of solutions of viscous Hamilton-Jacobi equations with superquadratic Hamiltonian

被引:32
|
作者
Tchamba, Thierry Tabet [1 ,2 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, CNRS, UMR 6083,FR 2964, Tours, France
[2] Univ Yaounde I, Dept Math, Yaounde, Cameroon
关键词
NONLINEAR ELLIPTIC-EQUATIONS; STRONG MAXIMUM PRINCIPLE; VISCOSITY SOLUTIONS; DIRICHLET PROBLEM; GLOBAL EXISTENCE; CAUCHY-PROBLEM; DECAY; DOMAINS;
D O I
10.3233/ASY-2009-0965
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behavior of the unique viscosity solution u of the viscous Hamilton-Jacobi equation u(t) - Delta u + |Du|(m) = f in Omega x (0,+infinity) with inhomogeneous Dirichlet boundary conditions, where Omega is a bounded domain of R-N. We mainly focus on the superquadratic case (m > 2) and consider the Dirichlet conditions in the generalized viscosity sense. Under rather natural assumptions on f, the initial and boundary data, we connect the problem studied to its associated stationary generalized Dirichlet problem on one hand and to a stationary problem with a state constraint boundary condition on the other hand.
引用
收藏
页码:161 / 186
页数:26
相关论文
共 50 条
  • [1] On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations
    Barles, Guy
    Porretta, Alessio
    Tchamba, Thierry Tabet
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (05): : 497 - 519
  • [2] On the large time behavior of solutions of Hamilton-Jacobi equations
    Barles, G
    Souganidis, PE
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) : 925 - 939
  • [3] Large-time behavior of unbounded solutions of viscous Hamilton-Jacobi equations in RN
    Barles, Guy
    Quaas, Alexander
    Rodriguez-Paredes, Andrei
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 46 (03) : 547 - 572
  • [4] On large solutions for fractional Hamilton-Jacobi equations
    Davila, Gonzalo
    Quaas, Alexander
    Topp, Erwin
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (05) : 1313 - 1335
  • [5] Stochastic homogenization of viscous superquadratic Hamilton-Jacobi equations in dynamic random environment
    Jing, Wenjia
    Souganidis, Panagiotis E.
    Tran, Hung V.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2017, 4
  • [6] A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations
    Davini, Andrea
    Siconolfi, Antonio
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (02) : 478 - 502
  • [7] A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians
    Cagnetti, Filippo
    Gomes, Diogo
    Mitake, Hiroyoshi
    Tran, Hung V.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (01): : 183 - 200
  • [8] Local behavior of solutions of Hamilton-Jacobi equations
    Williams, SA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (02) : 323 - 328
  • [9] Large Time Asymptotics of Hamilton-Jacobi Equations
    DYNAMICAL AND GEOMETRIC ASPECTS OF HAMILTON-JACOBI AND LINEARIZED MONGE-AMPERE EQUATIONS, VIASM 2016, 2017, 2183 : 141 - 176
  • [10] Large time behavior of unbounded solutions of first-order Hamilton-Jacobi equations in RN
    Barles, Guy
    Ley, Olivier
    Thi-Tuyen Nguyen
    Thanh Viet Phan
    ASYMPTOTIC ANALYSIS, 2019, 112 (1-2) : 1 - 22