Nodule-Plus R-CNN and Deep Self-Paced Active Learning for 3D Instance Segmentation of Pulmonary Nodules

被引:19
作者
Wang, Wenzhe [1 ,2 ]
Feng, Ruiwei [1 ,2 ]
Chen, Jintai [1 ,2 ]
Lu, Yifei [1 ,2 ]
Chen, Tingting [1 ,2 ]
Yu, Hongyun [1 ,2 ]
Chen, Danny Z. [2 ,3 ]
Wu, Jian [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Real Doctor Res Ctr, Hangzhou 310027, Zhejiang, Peoples R China
[3] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
基金
中国国家自然科学基金;
关键词
Pulmonary nodule segmentation; 3D CT images; R-CNN; active learning; self-paced learning; IMAGE DATABASE CONSORTIUM;
D O I
10.1109/ACCESS.2019.2939850
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate and automatic segmentation of pulmonary nodules in 3D thoracic Computed Tomography (CT) images is of great significance for Computer-Aided medical Diagnosis (CAD) of lung cancer. Currently, this important task remains challenging for lack of the voxel-level annotation and training strategies that balance target/background voxels in thoracic CT images. In this paper, a new region-based network, called Nodule-plus Region-based CNN, is proposed to detect pulmonary nodules in 3D thoracic CT images effectively while synchronously generating an instance segmentation mask for every detected instance. Our new network is constructed with a stack of convolutional blocks in which lateral connections are used to alleviate the difficulty of vanishing gradients. In addition, in order to reduce annotation workload and make best use of unannotated samples, we proposed a new Deep Self-paced Active Learning (DSAL) strategy by combining Active Learning (AL) and Self-Paced Learning (SPL) strategies. For the purpose of evaluating the performance of our proposed Nodule-plus R-CNN, we conduct a series of experiments on the public LIDC-IDRI dataset, and our model achieves 0.66 Dice and 0.96 TP Dice, which are state-of-the-art best results of pulmonary nodule segmentation. When the amount of available annotated samples is limited, our model trained with the DSAL strategy performs much better than that trained with the standard strategy.
引用
收藏
页码:128796 / 128805
页数:10
相关论文
共 29 条
[1]  
Abdulkadir O. A., 2016, MEDICAL IMAGE COMPUT, V9901, P424, DOI [10.1007/978-3-319-46723-8_49, DOI 10.1007/978-3-319-46723-8_49]
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation [J].
Chen, Hao ;
Qi, Xiaojuan ;
Yu, Lequan ;
Heng, Pheng-Ann .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2487-2496
[4]   The Importance of Skip Connections in Biomedical Image Segmentation [J].
Drozdzal, Michal ;
Vorontsov, Eugene ;
Chartrand, Gabriel ;
Kadoury, Samuel ;
Pal, Chris .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :179-187
[5]  
Feng Xinyang, 2017, Med Image Comput Comput Assist Interv, V10435, P568, DOI 10.1007/978-3-319-66179-7_65
[6]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[7]   Hessian based approaches for 3D lung nodule segmentation [J].
Goncalves, L. ;
Novo, J. ;
Campilho, A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2016, 61 :1-15
[8]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[9]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[10]  
Jiang L, 2015, AAAI CONF ARTIF INTE, P2694