Spherically shaped micro-structured antireflective surfaces

被引:12
作者
Bouffaron, R. [1 ,2 ]
Escoubas, L. [1 ,2 ]
Brissonneau, V. [1 ,4 ]
Simon, J. J. [1 ,2 ]
Berginc, G. [4 ]
Torchio, Ph. [1 ,2 ]
Flory, F. [1 ,3 ]
Masclet, Ph.
机构
[1] Aix Marseille Univ, IM2NP, Marseille, France
[2] CNRS, IM2NP, UMR 6242, Marseille, France
[3] Ecole Cent Marseille, Marseille, France
[4] Thales Optron SA, Guyancourt, France
关键词
D O I
10.1364/OE.17.021590
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An antireflecting micro-structured interface, working in the resonance domain, and made from a bi-periodic array of semi-spherical hollowing-out in a silicon substrate is presented. Its parameters such as sphere radius and position of sphere centers from the surface are optimized numerically. A simple and robust process is described allowing such kind of antireflective surfaces to be fabricated for the infrared range. Spectral and angular reflectance measurement demonstrates the efficiency of the antireflective micro-structured interface which can easily be adapted for the visible range and for photovoltaic applications by a simple homothetic modification of the micro-structure typical dimensions. (C) 2009 Optical Society of America
引用
收藏
页码:21590 / 21597
页数:8
相关论文
共 14 条
[1]  
BORN M, 1980, PRINCIPLES OPTICS, P705
[2]   Enhanced antireflecting properties of micro-structured top-flat pyramids [J].
Bouffaron, R. ;
Escoubas, L. ;
Simon, J. J. ;
Torchio, Ph. ;
Flory, F. ;
Berginc, G. ;
Masclet, Ph. .
OPTICS EXPRESS, 2008, 16 (23) :19304-19309
[3]   Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum [J].
Busch, K ;
John, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (05) :967-970
[4]   Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects [J].
Chang, Y. C. ;
Mei, G. H. ;
Chang, T. W. ;
Wang, T. J. ;
Lin, D. Z. ;
Lee, C. K. .
NANOTECHNOLOGY, 2007, 18 (28)
[5]   REDUCTION OF LENS REFLECTION BY MOTH EYE PRINCIPLE [J].
CLAPHAM, PB ;
HUTLEY, MC .
NATURE, 1973, 244 (5414) :281-282
[6]   Toward perfect antireflection coatings: numerical investigation [J].
Dobrowolski, JA ;
Poitras, D ;
Ma, P ;
Vakil, H ;
Acree, M .
APPLIED OPTICS, 2002, 41 (16) :3075-3083
[7]   An antireflective silicon grating working in the resonance domain for the near infrared spectral region [J].
Escoubas, L ;
Simon, JJ ;
Loli, M ;
Berginc, G ;
Flory, F ;
Giovannini, H .
OPTICS COMMUNICATIONS, 2003, 226 (1-6) :81-88
[8]   Some application cases and related manufacturing techniques for optically functional microstructures on large areas [J].
Gombert, A ;
Blasi, B ;
Bühler, C ;
Nitz, P ;
Mick, J ;
Hossfeld, W ;
Niggemann, M .
OPTICAL ENGINEERING, 2004, 43 (11) :2525-2533
[9]   OPTIMAL-DESIGN FOR ANTIREFLECTIVE TAPERED 2-DIMENSIONAL SUBWAVELENGTH GRATING STRUCTURES [J].
GRANN, EB ;
MOHARAM, MG ;
POMMET, DA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (02) :333-339
[10]  
MacLeod H.A., 1986, Thin-Film Optical Filters