Controlled/"living" radical polymerization. Atom transfer radical polymerization using multidentate amine ligands

被引:520
作者
Xia, JH [1 ]
Matyjaszewski, K [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
关键词
D O I
10.1021/ma971009x
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Three multidentate amines, tetramethylethylenediamine (TMEDA), N,N,N',N',N"-pentamethyldiethylenetriamine (PMDETA) and 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA) have been successfully used as new ligands in the copper mediated atom transfer radical polymerization (ATRP) of styrene, methyl acrylate and methyl methacrylate. All the polymerizations were well controlled with a linear increase of molecular weights (M-n) with conversion and relatively low polydispersities throughout the reactions. Compared to the 2,2'-bipyridine (bipy) based ligands, most multidentate amines are less expensive and the polymerization mixtures are less colored. In particular, the use of the tridentate PMDETA and the tetradentate HMTETA as the ligands resulted in faster polymerization rates for styrene and methyl acrylate than those using bipy as the ligand. This may be in part attributed to the fact that the coordination complexes between copper and the simple amines have lower redox potentials than the copper-bipy complex, resulting in higher rates of activation of the dormant halides. Additional rate effects may originate from the solubilities of the copper(I) and copper(II) complexes. The new ligands are very attractive alternatives to bipy and its derivatives as ligands.
引用
收藏
页码:7697 / 7700
页数:4
相关论文
共 17 条
[1]   On the structure, electrochemistry, and spectroscopy of the (N,N'-bis(2'-(dimethylamino)ethyl)-N,N'-dimethylpropane-1,3-diamine)copper(II) ion [J].
Bernhardt, PV .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (04) :771-774
[2]  
GEORGES MK, 1994, TRENDS POLYM SCI, V2, P66
[3]   Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(II) complex and different activated alkyl halides [J].
Granel, C ;
Dubois, P ;
Jerome, R ;
Teyssie, P .
MACROMOLECULES, 1996, 29 (27) :8576-8582
[4]   LIVING RADICAL POLYMERIZATION .1. POSSIBILITIES AND LIMITATIONS [J].
GRESZTA, D ;
MARDARE, D ;
MATYJASZEWSKI, K .
MACROMOLECULES, 1994, 27 (03) :638-644
[5]   Controlled/''living'' radical polymerization of methyl methacrylate by atom transfer radical polymerization [J].
Grimaud, T ;
Matyjaszewski, K .
MACROMOLECULES, 1997, 30 (07) :2216-2218
[6]   Atom transfer radical polymerization of methyl methacrylate initiated by alkyl bromide and 2-pyridinecarbaldehyde imine copper(I) complexes [J].
Haddleton, DM ;
Jasieczek, CB ;
Hannon, MJ ;
Shooter, AJ .
MACROMOLECULES, 1997, 30 (07) :2190-2193
[7]   MOLECULAR-WEIGHT CONTROL BY A LIVING FREE-RADICAL POLYMERIZATION PROCESS [J].
HAWKER, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (24) :11185-11186
[8]  
Karlin K. D., 1983, COPPER COORDINATION
[9]   POLYMERIZATION OF METHYL-METHACRYLATE WITH THE CARBON-TETRACHLORIDE DICHLOROTRIS(TRIPHENYLPHOSPHINE)RUTHENIUM(II) METHYLALUMINUM BIS(2,6-DI-TERT-BUTYLPHENOXIDE) INITIATING SYSTEM - POSSIBILITY OF LIVING RADICAL POLYMERIZATION [J].
KATO, M ;
KAMIGAITO, M ;
SAWAMOTO, M ;
HIGASHIMURA, T .
MACROMOLECULES, 1995, 28 (05) :1721-1723
[10]   COPPER(I) CHLORIDE [J].
KELLER, RN ;
WYCOFF, HD .
INORGANIC SYNTHESES, 1946, 2 :1-4