Supremum topological sequence entropy of circle maps

被引:3
作者
Kuang, Rui [1 ]
Yang, Yini [2 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
[2] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Circle maps; Supremum topological sequence entropy; Topological sequence entropy pair; Non-separated pair; DYNAMICS;
D O I
10.1016/j.topol.2021.107670
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper some formulas of supremum topological sequence entropy h(top)(infinity)(f) are investigated for circle maps. If f is a circle map then h(top)(infinity)(f) = h(top)(infinity)(f|(<(E(f))over bar>)), where <(E(f))over bar> is the closure of the set of eventually periodic points of f; If fis a circle map with zero topological entropy and Fix(f) not equal empty set then h(top)(infinity)(f|vertical bar(Omega(f))) = 0, where Omega(f) denotes the set of non-wandering points of f. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 24 条
[1]   Commutativity and non-commutativity of topological sequence entropy [J].
Balibrea, F ;
Peña, JSC ;
López, VJ .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (05) :1693-+
[2]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[3]  
BLOCK LS, 1992, LECT NOTES MATH, V1513, pUR3
[4]  
Canovas J.S, 2000, APPL GEN TOPOL, V2, P1
[5]  
Canovas J.S, 2002, AEQUATIONES MATH, V64, P53
[6]  
Canovas JS, 2007, DYNAM CONT DIS SER A, V14, P47
[7]   Topological sequence entropy of interval maps [J].
Cánovas, JS .
NONLINEARITY, 2004, 17 (01) :49-56
[8]  
COVEN EM, 1986, ERGOD THEOR DYN SYST, V6, P1
[9]  
Denker M., 1976, Ergodic Theory on Compact Spaces
[10]   POSITIVE SEQUENCE TOPOLOGICAL-ENTROPY CHARACTERIZES CHAOTIC MAPS [J].
FRANZOVA, N ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1083-1086