VISIBLE AND INFRARED IMAGE FUSION USING ENCODER-DECODER NETWORK

被引:5
|
作者
Ataman, Ferhat Can [1 ]
Bozdagi Akar, Gozde [1 ]
机构
[1] Middle East Tech Univ, Ankara, Turkey
关键词
infrared; visible images; image fusion; deep learning; encoder-decoder network;
D O I
10.1109/ICIP42928.2021.9506740
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of multispectral image fusion is to combine object or scene features of images with different spectral characteristics to increase the perceptual quality. In this paper, we present a novel learning-based solution to image fusion problem focusing on infrared and visible spectrum images. The proposed solution utilizes only convolution and pooling layers together with a loss function using no-reference quality metrics. The analysis is performed qualitatively and quantitatively on various datasets. The results show better performance than stateof-the-art methods. Also, the size of our network enables real-time performance on embedded devices. Project codes can be found at https://github.com/ferhatcan/ pyFusionSR.
引用
收藏
页码:1779 / 1783
页数:5
相关论文
共 50 条
  • [31] Encoder-Decoder with Multi-scale Information Fusion for Semantic Image Segmentation
    Ma, Xinxin
    Liu, Kai
    Ding, Chongyang
    Yan, Lin
    Duan, Meiyu
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [32] A joint convolution auto-encoder network for infrared and visible image fusion
    Zhang, Zhancheng
    Gao, Yuanhao
    Xiong, Mengyu
    Luo, Xiaoqing
    Wu, Xiao-Jun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) : 29017 - 29035
  • [33] Parallel encoder-decoder framework for image captioning
    Saeidimesineh, Reyhane
    Adibi, Peyman
    Karshenas, Hossein
    Darvishy, Alireza
    KNOWLEDGE-BASED SYSTEMS, 2023, 282
  • [34] A joint convolution auto-encoder network for infrared and visible image fusion
    Zhancheng Zhang
    Yuanhao Gao
    Mengyu Xiong
    Xiaoqing Luo
    Xiao-Jun Wu
    Multimedia Tools and Applications, 2023, 82 : 29017 - 29035
  • [35] MVCT image enhancement using reference-based encoder-decoder convolutional neural network
    Jin, Shuang
    Xu, Xiaotong
    Su, Zhe
    Tang, Long
    Zheng, Mengxun
    Liang, Peiwen
    Zhang, Hua
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 241
  • [36] Encoder-decoder network with RMP for tongue segmentation
    Kusakunniran, Worapan
    Borwarnginn, Punyanuch
    Karnjanapreechakorn, Sarattha
    Thongkanchorn, Kittikhun
    Ritthipravat, Panrasee
    Tuakta, Pimchanok
    Benjapornlert, Paitoon
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (05) : 1193 - 1207
  • [37] An encoder-decoder switch network for purchase prediction
    Park, Chanyoung
    Kim, Donghyun
    Yu, Hwanjo
    KNOWLEDGE-BASED SYSTEMS, 2019, 185
  • [38] An encoder-decoder based thermo-visible image translation for disguised and undisguised faces
    Kumar, Sumit
    Singh, Satish Kumar
    Mishra, Nayaneesh Kumar
    Dutta, Mainak
    IMAGE AND VISION COMPUTING, 2022, 119
  • [39] Encoder-decoder network with RMP for tongue segmentation
    Worapan Kusakunniran
    Punyanuch Borwarnginn
    Sarattha Karnjanapreechakorn
    Kittikhun Thongkanchorn
    Panrasee Ritthipravat
    Pimchanok Tuakta
    Paitoon Benjapornlert
    Medical & Biological Engineering & Computing, 2023, 61 : 1193 - 1207
  • [40] Laplacian encoder-decoder network for raindrop removal
    Zini, Simone
    Buzzelli, Marco
    PATTERN RECOGNITION LETTERS, 2022, 158 : 24 - 33