VISIBLE AND INFRARED IMAGE FUSION USING ENCODER-DECODER NETWORK

被引:5
作者
Ataman, Ferhat Can [1 ]
Bozdagi Akar, Gozde [1 ]
机构
[1] Middle East Tech Univ, Ankara, Turkey
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
关键词
infrared; visible images; image fusion; deep learning; encoder-decoder network;
D O I
10.1109/ICIP42928.2021.9506740
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of multispectral image fusion is to combine object or scene features of images with different spectral characteristics to increase the perceptual quality. In this paper, we present a novel learning-based solution to image fusion problem focusing on infrared and visible spectrum images. The proposed solution utilizes only convolution and pooling layers together with a loss function using no-reference quality metrics. The analysis is performed qualitatively and quantitatively on various datasets. The results show better performance than stateof-the-art methods. Also, the size of our network enables real-time performance on embedded devices. Project codes can be found at https://github.com/ferhatcan/ pyFusionSR.
引用
收藏
页码:1779 / 1783
页数:5
相关论文
共 20 条
[11]   Infrared and visible image fusion methods and applications: A survey [J].
Ma, Jiayi ;
Ma, Yong ;
Li, Chang .
INFORMATION FUSION, 2019, 45 :153-178
[12]  
Piella Gemma, 2003, P 2003 INT C IM PROC, V3, pIII
[13]   DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs [J].
Prabhakar, K. Ram ;
Srikar, V. Sai ;
Babu, R. Venkatesh .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4724-4732
[14]   RTFNet: RGB-Thermal Fusion Network for Semantic Segmentation of Urban Scenes [J].
Sun, Yuxiang ;
Zuo, Weixun ;
Liu, Ming .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (03) :2576-2583
[15]  
Toet A, 2017, DATA BRIEF, V15, P249, DOI 10.1016/j.dib.2017.09.038
[16]  
Ying Zhenqi ang, 2019, ARXIV191210088
[17]  
Yuan C, 2020, MATH PROBLEMS ENG, V2020
[18]   VIFB: A Visible and Infrared Image Fusion Benchmark [J].
Zhang, Xingchen ;
Ye, Ping ;
Xiao, Gang .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :468-478
[19]   Fusion of infrared and visible images for night-vision context enhancement [J].
Zhou, Zhiqiang ;
Dong, Mingjie ;
Xie, Xiaozhu ;
Gao, Zhifeng .
APPLIED OPTICS, 2016, 55 (23) :6480-6490
[20]   Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters [J].
Zhou, Zhiqiang ;
Wang, Bo ;
Li, Sun ;
Dong, Mingjie .
INFORMATION FUSION, 2016, 30 :15-26