VISIBLE AND INFRARED IMAGE FUSION USING ENCODER-DECODER NETWORK

被引:5
|
作者
Ataman, Ferhat Can [1 ]
Bozdagi Akar, Gozde [1 ]
机构
[1] Middle East Tech Univ, Ankara, Turkey
关键词
infrared; visible images; image fusion; deep learning; encoder-decoder network;
D O I
10.1109/ICIP42928.2021.9506740
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of multispectral image fusion is to combine object or scene features of images with different spectral characteristics to increase the perceptual quality. In this paper, we present a novel learning-based solution to image fusion problem focusing on infrared and visible spectrum images. The proposed solution utilizes only convolution and pooling layers together with a loss function using no-reference quality metrics. The analysis is performed qualitatively and quantitatively on various datasets. The results show better performance than stateof-the-art methods. Also, the size of our network enables real-time performance on embedded devices. Project codes can be found at https://github.com/ferhatcan/ pyFusionSR.
引用
收藏
页码:1779 / 1783
页数:5
相关论文
共 50 条
  • [1] EDAfuse: A encoder-decoder with atrous spatial pyramid network for infrared and visible image fusion
    Nie, Cairen
    Zhou, Dongming
    Nie, Rencan
    IET IMAGE PROCESSING, 2023, 17 (01) : 132 - 143
  • [2] SEDRFuse: A Symmetric Encoder-Decoder With Residual Block Network for Infrared and Visible Image Fusion
    Jian, Lihua
    Yang, Xiaomin
    Liu, Zheng
    Jeon, Gwanggil
    Gao, Mingliang
    Chisholm, David
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [3] CUFD: An encoder-decoder network for visible and infrared image fusion based on common and unique feature decomposition
    Xu, Han
    Gong, Meiqi
    Tian, Xin
    Huang, Jun
    Ma, Jiayi
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 218
  • [4] A full-scale hierarchical encoder-decoder network with cascading edge-prior for infrared and visible image fusion
    Luo, Xiaoqing
    Wang, Juan
    Zhang, Zhancheng
    Wu, Xiao-jun
    PATTERN RECOGNITION, 2024, 148
  • [5] Whole Image Synthesis Using a Deep Encoder-Decoder Network
    Sevetlidis, Vasileios
    Giuffrida, Mario Valerio
    Tsaftaris, Sotirios A.
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2016, 2016, 9968 : 127 - 137
  • [6] WaveFusionNet: Infrared and visible image fusion based on multi-scale feature encoder-decoder and discrete wavelet decomposition
    Liu, Renhe
    Liu, Yu
    Wang, Han
    Du, Shan
    OPTICS COMMUNICATIONS, 2024, 573
  • [7] Underwater Image Enhancement Using Encoder-Decoder Scale Attention Network
    Lee, Ka-Ki
    Hsieh, Jun-Wei
    Hsieh, Yi-Kuan
    Hsieh, An-Ting
    2024 6TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND THE INTERNET, ICCCI 2024, 2024, : 101 - 106
  • [8] Image Denoising Using a Deep Encoder-Decoder Network with Skip Connections
    Couturier, Raphael
    Perrot, Gilles
    Salomon, Michel
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VI, 2018, 11306 : 554 - 565
  • [9] An Improved Encoder-Decoder Network for Ore Image Segmentation
    Yang, Hao
    Huang, Chao
    Wang, Long
    Luo, Xiong
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11469 - 11475
  • [10] Deep Hierarchical Encoder-Decoder Network for Image Captioning
    Xiao, Xinyu
    Wang, Lingfeng
    Ding, Kun
    Xiang, Shiming
    Pan, Chunhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (11) : 2942 - 2956