Study of active sites on Se-MnS/NiS heterojunctions as highly efficient bifunctional electrocatalysts for overall water splitting

被引:122
作者
Zhu, Jie [1 ]
Sun, Mao [1 ]
Liu, Shujie [1 ]
Liu, Xianhu [2 ]
Hu, Kan [1 ]
Wang, Lei [1 ,2 ]
机构
[1] Inner Mongolia Univ, Coll Chem & Chem Engn, Inner Mongolia Key Lab Nanosci & Nanotechnol, Hohhot 010021, Peoples R China
[2] Zhengzhou Univ, Key Lab Mat Proc & Mold, Minist Educ, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
LAYERED DOUBLE HYDROXIDES; NANOSHEETS; NI; PERFORMANCE; REDUCTION; ARRAYS; FILMS;
D O I
10.1039/c9ta10860b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mn-based sulfides have been used in oxygen reduction reactions, lithium-ion batteries and supercapacitors. However, only a few Mn-based catalysts have been reported for OER or HER due to their poor catalytic activity. Mn is commonly used as a dopant to tune the electronic structure of electrocatalysts. It is thus a challenge to achieve highly efficient OER and HER activities for overall water splitting using Mn-based catalysts. In this work, for the first time, we synthesized a Se-MnS/NiS electrocatalyst through facile hydrothermal and chemical deposition treatments. The introduction of the Se dopant could tailor the structure and increase the electrochemically active surface area, favoring the electrocatalysis of HER and OER. Besides, the synergistic effect of the Se-MnS/NiS heterojunctions promoted the adsorption of hydrogen atoms on the surface of the catalyst compared to the NiSe, NiS, and Se-NiS catalysts. The resulting Se-NiS/MnS catalyst required overpotentials as low as 56 mV and 211 mV to deliver a 10 mA cm(-2) current density for HER and OER in alkaline media, respectively. Furthermore, Se-MnS/NiS, when directly used as bifunctional electrodes for overall water splitting, exhibited a relatively low voltage of 1.47 V at 10 mA cm(-2) and remarkable durability for 48 h. Therefore, it can be considered as one of the promising bifunctional Mn-based electrocatalyst candidates that can replace precious-metal-based electrocatalysts for efficient water splitting.
引用
收藏
页码:26975 / 26983
页数:9
相关论文
共 44 条
[1]   Self-Assembled Manganese Sulfide Nanostructures on Graphene as an Oxygen Reduction Catalyst for Anion Exchange Membrane Fuel Cells [J].
Arunchander, Asokan ;
Peera, Shaik Gouse ;
Sahu, Akhila Kumar .
CHEMELECTROCHEM, 2017, 4 (06) :1544-1553
[2]   Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles [J].
Burke, Michaela S. ;
Enman, Lisa J. ;
Batchellor, Adam S. ;
Zou, Shihui ;
Boettcher, Shannon W. .
CHEMISTRY OF MATERIALS, 2015, 27 (22) :7549-7558
[3]   3D Nitrogen-Anion-Decorated Nickel Sulfides for Highly Efficient Overall Water Splitting [J].
Chen, Pengzuo ;
Zhou, Tianpei ;
Zhang, Mengxing ;
Tong, Yun ;
Zhong, Chengan ;
Zhang, Nan ;
Zhang, Lidong ;
Wu, Changzheng ;
Xie, Yi .
ADVANCED MATERIALS, 2017, 29 (30)
[4]   Low-Temperature Selective Catalytic Reduction of NOx with NH3 over Fe-Mn Mixed-Oxide Catalysts Containing Fe3Mn3O8 Phase [J].
Chen, Zhihang ;
Wang, Furong ;
Li, Hua ;
Yang, Qing ;
Wang, Lefu ;
Li, Xuehui .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (01) :202-212
[5]   CHARACTERIZATION OF REDOX STATES OF NICKEL-HYDROXIDE FILM ELECTRODES BY INSITU SURFACE RAMAN-SPECTROSCOPY [J].
DESILVESTRO, J ;
CORRIGAN, DA ;
WEAVER, MJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (04) :885-892
[6]   Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction [J].
Diaz-Morales, Oscar ;
Ledezma-Yanez, Isis ;
Koper, Marc T. M. ;
Calle-Vallejo, Federico .
ACS CATALYSIS, 2015, 5 (09) :5380-5387
[7]   Tuning Unique Peapod-Like Co(SxSe1-x)2 Nanoparticles for Efficient Overall Water Splitting [J].
Fang, Ling ;
Li, Wenxiang ;
Guan, Yongxin ;
Feng, Yangyang ;
Zhang, Huijuan ;
Wang, Shilong ;
Wang, Yu .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (24)
[8]   High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting [J].
Feng, Liang-Liang ;
Yu, Guangtao ;
Wu, Yuanyuan ;
Li, Guo-Dong ;
Li, Hui ;
Sun, Yuanhui ;
Asefa, Tewodros ;
Chen, Wei ;
Zou, Xiaoxin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (44) :14023-14026
[9]   Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction [J].
Han, Lei ;
Dong, Shaojun ;
Wang, Erkang .
ADVANCED MATERIALS, 2016, 28 (42) :9266-9291
[10]   Synergism of Geometric Construction and Electronic Regulation: 3D Se-(NiCo)Sx/(OH)x Nanosheets for Highly Efficient Overall Water Splitting [J].
Hu, Congling ;
Zhang, Lei ;
Zhao, Zhi-Jian ;
Li, Ang ;
Chang, Xiaoxia ;
Gong, Jinlong .
ADVANCED MATERIALS, 2018, 30 (12)