High-intensity scattering processes of relativistic electrons in vacuum

被引:50
作者
Hartemann, FV [1 ]
机构
[1] Lawrence Livermore Natl Lab, Inst Laser Sci & Applicat, Livermore, CA 94550 USA
[2] Univ Calif Davis, Dept Appl Sci, Livermore, CA 95616 USA
关键词
D O I
10.1063/1.872875
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent advances in novel technologies such as chirped pulse amplification and high gradient rf photoinjectors make it possible to study experimentally the interaction of relativistic electrons with ultrahigh intensity photon fields. Femtosecond laser systems operating in the TW-PW range are now available, as well as synchronized relativistic electron bunches with subpicosecond durations and THz bandwidths. Ponderomotive scattering can accelerate these electrons with extremely high gradients in a three-dimensional vacuum laser focus. The nonlinear Doppler shift induced by relativistic radiation pressure in Compton backscattering is shown to yield complex nonlinear spectra which can be modified by using temporal laser pulse shaping techniques. Colliding lasers pulses, where ponderomotive acceleration and Compton backscattering are combined, could also yield extremely short wavelength photons. Finally, strong radiative corrections are expected when the Doppler-upshifted laser wavelength approaches the Compton scale. These are discussed within the context of high field classical electrodynamics, a new discipline borne out of the aforementioned innovations. (C) 1998 American Institute of Physics.
引用
收藏
页码:2037 / 2047
页数:11
相关论文
共 29 条
[1]   NONRESONANT ABOVE-THRESHOLD IONIZATION BY CIRCULARLY POLARIZED SUBPICOSECOND PULSES [J].
BUCKSBAUM, PH ;
VANWOERKOM, LD ;
FREEMAN, RR ;
SCHUMACHER, DW .
PHYSICAL REVIEW A, 1990, 41 (07) :4119-4121
[2]   Observation of nonlinear effects in compton scattering [J].
Bula, C ;
McDonald, KT ;
Prebys, EJ ;
Bamber, C ;
Boege, S ;
Kotseroglou, T ;
Melissinos, AC ;
Meyerhofer, DD ;
Ragg, W ;
Burke, DL ;
Field, RC ;
HortonSmith, G ;
Odian, AC ;
Spencer, JE ;
Walz, D ;
Berridge, SC ;
Bugg, WM ;
Shmakov, K ;
Weidemann, AW .
PHYSICAL REVIEW LETTERS, 1996, 76 (17) :3116-3119
[3]   ULTRAHIGH-GRADIENT ACCELERATION OF INJECTED ELECTRONS BY LASER-EXCITED RELATIVISTIC ELECTRON-PLASMA WAVES [J].
CLAYTON, CE ;
MARSH, KA ;
DYSON, A ;
EVERETT, M ;
LAL, A ;
LEEMANS, WP ;
WILLIAMS, R ;
JOSHI, C .
PHYSICAL REVIEW LETTERS, 1993, 70 (01) :37-40
[4]   H-]O LIMIT OF QUANTUM ELECTRODYNAMICS [J].
DENTE, GC .
PHYSICAL REVIEW D, 1978, 17 (10) :2827-2829
[5]   CLASSICAL LIMIT OF QUANTUM ELECTRODYNAMICS [J].
DENTE, GC .
PHYSICAL REVIEW D, 1975, 12 (06) :1733-1738
[7]   2-DIMENSIONAL SIMULATIONS OF SINGLE-FREQUENCY AND BEAT-WAVE LASER-PLASMA HEATING [J].
FORSLUND, DW ;
KINDEL, JM ;
MORI, WB ;
JOSHI, C ;
DAWSON, JM .
PHYSICAL REVIEW LETTERS, 1985, 54 (06) :558-561
[8]   TIME AND FREQUENCY-DOMAIN ANALYSIS OF SUPERRADIANT COHERENT SYNCHROTRON-RADIATION IN A WAVE-GUIDE FREE-ELECTRON LASER [J].
GOVER, A ;
HARTEMANN, FV ;
LESAGE, GP ;
LUHMANN, NC ;
ZHANG, RS ;
PELLEGRINI, C .
PHYSICAL REVIEW LETTERS, 1994, 72 (08) :1192-1195
[9]  
Gradshteyn I.S., 1980, TABLE INTEGRALS SERI
[10]   Transform-limited coherent synchrotron radiation wavepackets in a chirped pulse free-electron laser [J].
Hartemann, FV ;
LeSage, GP ;
Troha, AL ;
Luhmann, NC ;
Fochs, SN .
PHYSICS OF PLASMAS, 1996, 3 (06) :2446-2456