INVARIANT DISTRIBUTIONS FOR HOMOGENEOUS FLOWS AND AFFINE TRANSFORMATIONS

被引:7
|
作者
Flaminio, Livio [1 ]
Forni, Giovanni [2 ]
Hertz, Federico Rodriguez [3 ]
机构
[1] Univ Lille, CNRS, UMR 8524, Unite Format & Rech Math, F-59655 Villeneuve Dascq, France
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Cohomological equations; homogeneous flows; PARTIALLY HYPERBOLIC DIFFEOMORPHISMS; COHOMOLOGICAL EQUATION; VECTOR-FIELDS; DIMENSION; SYSTEMS; SPACES; SOLVMANIFOLDS; EXPOSITION; CONJECTURE; STABILITY;
D O I
10.3934/jmd.2016.10.33
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every homogeneous flow on a finite-volume homogeneous manifold has countably many independent invariant distributions unless it is conjugate to a linear flow on a torus. We also prove that the same conclusion holds for every affine transformation of a homogenous space which is not conjugate to a toral translation. As a part of the proof, we have that any smooth partially hyperbolic flow on any compact manifold has countably many distinct minimal sets, hence countably many distinct ergodic probability measures. As a consequence, the Katok and Greenfield-Wallach conjectures hold in all of the above cases.
引用
收藏
页码:33 / 79
页数:47
相关论文
共 50 条
  • [41] Invariant Sets for Switching Affine Systems Subject to Semi-Algebraic Constraints
    Athanasopoulos, Nikolaos
    Jungers, Raphael M.
    IFAC PAPERSONLINE, 2016, 49 (18): : 158 - 163
  • [42] Transport equations and quasi-invariant flows on the Wiener space
    Fang, Shizan
    Luo, Dejun
    BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (03): : 295 - 328
  • [43] Explicit invariant manifolds and specialised trajectories in a class of unsteady flows
    Balasuriya, Sanjeeva
    PHYSICS OF FLUIDS, 2012, 24 (12)
  • [44] Global flows with invariant measures for the inviscid modified SQG equations
    Nahmod, Andrea R.
    Pavlovic, Natasa
    Staffilani, Gigliola
    Totz, Nathan
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2018, 6 (02): : 184 - 210
  • [45] Homogeneous 8-manifolds admitting invariant Spin(7)-structures
    Alekseevsky, Dmitri
    Chrysikos, Ioannis
    Fino, Anna
    Raffero, Alberto
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (08)
  • [46] Interval Exchange Transformations with Vanishing Sah-Arnoux-Fathi Invariant
    Skripchenko, A. S.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 325 (01) : 262 - 279
  • [47] On the fundamental group of compact homogeneous manifolds carrying an invariant fat distribution
    Lotta, A.
    ARCHIV DER MATHEMATIK, 2017, 108 (06) : 625 - 628
  • [48] ON ERGODIC PROPERTIES OF TIME CHANGES OF PARTIALLY HYPERBOLIC HOMOGENEOUS FLOWS
    Dong, Changguang
    JOURNAL OF MODERN DYNAMICS, 2023, 19 : 541 - 559
  • [49] Stability of the densities of invariant measures for piecewise affine expanding non-renormalizable maps
    Galeeva, R
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1997, 66 (01): : 137 - 144
  • [50] A fast and robust affine-invariant method for shape registration under partial occlusion
    Sinda Elghoul
    Faouzi Ghorbel
    International Journal of Multimedia Information Retrieval, 2022, 11 : 39 - 59