Visualizing high-dimensional input data with growing self-organizing maps

被引:0
作者
Delgado, Soledad [1 ]
Gonzalo, Consuelo [2 ]
Martinez, Estibaliz [2 ]
Arquero, Agueda [2 ]
机构
[1] Tech Univ Madrid, Dept Appl Comp Sci, Ctra Valencia Km 7, Madrid 28031, Spain
[2] Tech Univ Madrid, Dept Architecture & Technol Comp Sci, Madrid, Spain
来源
COMPUTATIONAL AND AMBIENT INTELLIGENCE | 2007年 / 4507卷
关键词
self-organizing maps; growing cell structures; exploratory data analysis; data mining; high-dimensional data;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, there exist many research areas that produce large multivariable datasets that are difficult to visualize in order to extract useful information. Kohonen self-organizing maps have been used successfully in the visualization and analysis of multidimensional data. In this work, a projection technique that compresses multidimensional datasets into two dimensional space using growing self-organizing maps is described. With this embedding scheme, traditional Kohonen visualization methods have been implemented using growing cell structures networks. New graphical map displays have been compared with Kohonen graphs using two groups of simulated data and one group of real multidimensional data selected from a satellite scene.
引用
收藏
页码:580 / +
页数:2
相关论文
共 11 条
[1]  
DELGADO S, 2004, GEOSC REM SENS S IEE, V1, P564
[2]  
Franzmeier M, 2005, LECT NOTES COMPUT SC, V3512, P725
[3]   GROWING CELL STRUCTURES - A SELF-ORGANIZING NETWORK FOR UNSUPERVISED AND SUPERVISED LEARNING [J].
FRITZKE, B .
NEURAL NETWORKS, 1994, 7 (09) :1441-1460
[4]  
Fritzke B., 1995, ADV NEURAL INFORMATI, V7, P625
[5]  
Kohonen T, 2001, SELF ORG MAPS, DOI [10.1007/978-3-642-56927-2_1, DOI 10.1007/978-3-642-56927-2_1]
[6]   A NONLINEAR PROJECTION METHOD BASED ON KOHONENS TOPOLOGY PRESERVING-MAPS [J].
KRAAIJVELD, MA ;
MAO, JC ;
JAIN, AK .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (03) :548-559
[7]  
MERLK D, 1997, WSOM 97 HELS FINL
[8]   New methods for self-organising map visual analysis [J].
Rubio, M ;
Giménez, V .
NEURAL COMPUTING & APPLICATIONS, 2003, 12 (3-4) :142-152
[9]  
Tukey J. W, 1977, EXPLORATORY DATA ANA, V2
[10]  
ULTSCH A, 1990, P INT NEUR NETW DORD