The transitivity of geodesic flows on rank 1 manifolds without focal points

被引:6
作者
Liu, Fei [1 ]
Zhu, Xiongfeng [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
关键词
Geodesic flows; No focal points; Transitive; CONJUGATE-POINTS;
D O I
10.1016/j.difgeo.2018.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we show that the geodesic flow on a compact rank 1 Riemannian manifold without focal points is transitive, which generalize the classical work of P. Eberlein in the case of nonpositive curvature. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 7 条
[1]   STRUCTURE OF MANIFOLDS OF NONPOSITIVE CURVATURE .1. [J].
BALLMANN, W ;
BRIN, M ;
EBERLEIN, P .
ANNALS OF MATHEMATICS, 1985, 122 (01) :171-203
[2]   GEODESIC FLOWS ON NEGATIVELY CURVED MANIFOLDS .1. [J].
EBERLEIN, P .
ANNALS OF MATHEMATICS, 1972, 95 (03) :492-&
[3]  
Eberlein P. B., 1996, Geometry of nonpositively curved manifolds
[4]   VARIETY OF MANIFOLDS WITHOUT CONJUGATE POINTS [J].
GULLIVER, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 210 (SEP) :185-201
[5]  
LIU F., 2017, PREPRINT
[6]   Entropy-expansiveness of Geodesic Flows on Closed Manifolds without Conjugate Points [J].
Liu, Fei ;
Wang, Fang .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (04) :507-520
[7]  
Wu W., 2016, PREPRINT