Modifying SnO2 with Polyacrylamide to Enhance the Performance of Perovskite Solar Cells

被引:51
作者
Dong, Haiyue [1 ]
Wang, Jilin [1 ,2 ]
Li, Xingyu [1 ]
Liu, Weiting [1 ]
Xia, Tian [1 ]
Yao, Disheng [1 ,2 ]
Zhang, Lixiu [3 ]
Zuo, Chuantian [3 ]
Ding, Liming [3 ]
Long, Fei [1 ,2 ]
机构
[1] Guilin Univ Technol, Sch Mat Sci & Engn, Guangxi Key Lab Opt & Elect Mat & Devices, Guilin 541004, Guangxi, Peoples R China
[2] Guilin Univ Technol, Collaborat Innovat Ctr Explorat Nonferrous Met Dep, Guilin 541004, Guangxi, Peoples R China
[3] Ctr Excellence Nanosci CAS, Natl Ctr Nanosci & Technol, Key Lab Nano Syst & Hierarch Fabricat CAS, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
charge transport; SnO2; modification; interface; nonionic polymer; polyacrylamide; HIGHLY EFFICIENT; ANION; SALT;
D O I
10.1021/acsami.2c08662
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Modification of the charge transport layers is an effective way to improve charge transport and performance of perovskite solar cells (PSCs). The ions in the ionic compounds used for the modification of SnO2 may migrate into the perovskite layer, which harms the stability of PSCs. In this work, a low-cost, water-soluble nonionic polymer polyacrylamide (PAM) is used to modify SnO2. The addition of PAM improves the uniformity, wettability, and electron mobility of the SnO2 film. Through the modification of SnO2 , the defects of perovskite films are reduced and the grain size is increased. Furthermore, the energy-level alignment at the SnO2/perovskite interface is improved, which is beneficial to the transfer of electrons from perovskite to SnO2. Finally, the power conversion efficiency (PCE) of PSCs formed from modified SnO(2)is enhanced to 22.59%. More importantly, the unencapsulated devices with modified SnO2 retain 90% of the initial value after storage for more than 1000 h under a relative humidity of 50%. These results indicate that modifying SnO2 using PAM is a promising strategy to improve the performance of PSCs.
引用
收藏
页码:34143 / 34150
页数:8
相关论文
共 41 条
[11]   Red-Carbon-Quantum-Dot-Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells [J].
Hui, Wei ;
Yang, Yingguo ;
Xu, Quan ;
Gu, Hao ;
Feng, Shanglei ;
Su, Zhenhuang ;
Zhang, Miaoran ;
Wang, Jiaou ;
Li, Xiaodong ;
Fang, Junfeng ;
Xia, Fei ;
Xia, Yingdong ;
Chen, Yonghua ;
Gao, Xingyu ;
Huang, Wei .
ADVANCED MATERIALS, 2020, 32 (04)
[12]   Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth [J].
Jang, Yeoun-Woo ;
Lee, Seungmin ;
Yeom, Kyung Mun ;
Jeong, Kiwan ;
Choi, Kwang ;
Choi, Mansoo ;
Noh, Jun Hong .
NATURE ENERGY, 2021, 6 (01) :63-+
[13]   SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells [J].
Jiang, Qi ;
Zhang, Xingwang ;
You, Jingbi .
SMALL, 2018, 14 (31)
[14]   Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells [J].
Ke, Weijun ;
Fang, Guojia ;
Liu, Qin ;
Xiong, Liangbin ;
Qin, Pingli ;
Tao, Hong ;
Wang, Jing ;
Lei, Hongwei ;
Li, Borui ;
Wan, Jiawei ;
Yang, Guang ;
Yan, Yanfa .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (21) :6730-6733
[15]   Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% [J].
Kim, Hui-Seon ;
Lee, Chang-Ryul ;
Im, Jeong-Hyeok ;
Lee, Ki-Beom ;
Moehl, Thomas ;
Marchioro, Arianna ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Yum, Jun-Ho ;
Moser, Jacques E. ;
Graetzel, Michael ;
Park, Nam-Gyu .
SCIENTIFIC REPORTS, 2012, 2
[16]   Rear-Surface Passivation by Melaminium Iodide Additive for Stable and Hysteresis-less Perovskite Solar Cells [J].
Kim, Seul-Gi ;
Chen, Jiangzhao ;
Seo, Ja-Young ;
Kang, Dong-Ho ;
Park, Nam-Gyu .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (30) :25372-25383
[17]   Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells [J].
Kojima, Akihiro ;
Teshima, Kenjiro ;
Shirai, Yasuo ;
Miyasaka, Tsutomu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (17) :6050-+
[18]   Discrete and polymeric iodoplumbates with Pb3I10 building blocks:: [Pb3I10]4-, [Pb7I22]8-, [Pb10I28]8-, 1∞[Pb3I10]4- and 2∞[Pb7I18]4- [J].
Krautscheid, H ;
Vielsack, F .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1999, (16) :2731-2735
[19]  
Krautscheid H, 2000, Z ANORG ALLG CHEM, V626, P3, DOI 10.1002/(SICI)1521-3749(200001)626:1<3::AID-ZAAC3>3.0.CO
[20]  
2-B