Saddle-type solenoidal basis sets

被引:0
|
作者
Zhuzhoma, E. V. [1 ]
Medvedev, V. S. [1 ]
机构
[1] Natl Res Univ, Higher Sch Econ, Moscow, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
basis set; solenoid; ATTRACTORS;
D O I
10.1134/S0001434617050224
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An example of a diffeomorphism of the 3-sphere with positive topological entropy which has a one-dimensional solenoidal basis set with a two-dimensional unstable and a one-dimensional stable invariant manifold at each point (in particular, the basis set is neither an attractor nor a repeller) is given. On the basis of this diffeomorphism, a nondissipative fast kinematic dynamo with a one-dimensional invariant solenoidal set is constructed.
引用
收藏
页码:960 / 968
页数:9
相关论文
共 50 条
  • [1] Saddle-type solenoidal basis sets
    E. V. Zhuzhoma
    V. S. Medvedev
    Mathematical Notes, 2017, 101 : 960 - 968
  • [2] An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems
    Jiang Jun
    CHINESE PHYSICS LETTERS, 2012, 29 (05)
  • [3] COULOMB EFFECTS AT SADDLE-TYPE CRITICAL POINTS
    KANE, EO
    PHYSICAL REVIEW, 1969, 180 (03): : 852 - &
  • [4] INVESTIGATION OF THE SADDLE-TYPE INSTABILITY OF ROTORDYNAMIC PUMPS
    GULICH, JF
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 1995, 61 (04): : 93 - 105
  • [5] SADDLE-TYPE BOW OF AS-CUT GAAS WAFERS
    OBOKATA, T
    EMORI, H
    FUKUDA, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1983, 22 (03): : L168 - L170
  • [6] Dirac Physical Measures on Saddle-Type Fixed Points
    Pablo Guarino
    Pierre-Antoine Guihéneuf
    Bruno Santiago
    Journal of Dynamics and Differential Equations, 2022, 34 : 983 - 1048
  • [7] OVARIAN FOLLICULAR POPULATIONS IN PONY AND SADDLE-TYPE MARES
    DRIANCOURT, MA
    PARIS, A
    ROUX, C
    MARIANA, JC
    PALMER, E
    REPRODUCTION NUTRITION DEVELOPMENT, 1982, 22 (06): : 1035 - 1047
  • [8] Determination functions of magnetic fields saddle-type DY
    Matuliauskas, R.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2008, (05) : 37 - 40
  • [9] Dirac Physical Measures on Saddle-Type Fixed Points
    Guarino, Pablo
    Guiheneuf, Pierre-Antoine
    Santiago, Bruno
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (02) : 983 - 1048
  • [10] Computation of Saddle-Type Slow Manifolds Using Iterative Methods
    Kristiansen, K. Uldall
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 1189 - 1227