Cyano-Functionalized n-Type Polymer with High Electron Mobility for High-Performance Organic Electrochemical Transistors

被引:90
|
作者
Feng, Kui [1 ,2 ]
Shan, Wentao [2 ]
Wang, Junwei [2 ]
Lee, Jin-Woo [3 ]
Yang, Wanli [2 ]
Wu, Wenchang [2 ]
Wang, Yimei [2 ]
Kim, Bumjoon J. [3 ]
Guo, Xugang [2 ,4 ]
Guo, Han [2 ]
机构
[1] Southern Univ Sci & Technol SUSTech, Acad Adv Interdisciplinary Studies, Shenzhen 518055, Guangdong, Peoples R China
[2] Southern Univ Sci & Technol SUSTech, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[4] Southern Univ Sci & Technol SUSTech, Guangdong Prov Key Lab Funct Oxide Mat & Devices, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
cyano-functionalization; electron mobility; n-type polymer semiconductors; organic electrochemical transistors; organic mixed ionic-electronic conductors; STRUCTURE-PROPERTY CORRELATIONS; SEMICONDUCTORS SYNTHESIS; CHARGE-CARRIER; DEVICE; DESIGN;
D O I
10.1002/adma.202201340
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
n-Type organic mixed ionic-electronic conductors (OMIECs) with high electron mobility are scarce and highly challenging to develop. As a result, the figure-of-merit (mu C*) of n-type organic electrochemical transistors (OECTs) lags far behind the p-type analogs, restraining the development of OECT-based low-power complementary circuits and biosensors. Here, two n-type donor-acceptor (D-A) polymers based on fused bithiophene imide dimer f-BTI2 as the acceptor unit and thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. The cyanation of TVT enables polymer f-BTI2g-TVTCN with simultaneously enhanced ion-uptake ability, film structural order, and charge-transport property. As a result, it is able to obtain a high volumetric capacitance (C*) of 170 +/- 22 F cm(-3) and a record OECT electron mobility (mu(e,OECT)) of 0.24 cm(2) V-1 s(-1) for f-BTI2g-TVTCN, subsequently achieving a state-of-the-art mu C* of 41.3 F cm(-1) V-1 s(-1) and geometry-normalized transconductance (g(m,norm)) of 12.8 S cm(-1) in n-type accumulation-mode OECTs. In contrast, only a moderate mu C* of 1.50 F cm(-1) V-1 s(-1) is measured for the non-cyanated polymer f-BTI2g-TVT. These remarkable results demonstrate the great power of cyano functionalization of polymer semiconductors in developing n-type OMIECs with substantial electron mobility in aqueous environment for high-performance n-type OECTs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Cyano-functionalized organic and polymeric semiconductors for high-performance n-type organic electronic devices
    Li, Yongchun
    Huang, Enmin
    Guo, Xugang
    Feng, Kui
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (18) : 3803 - 3819
  • [2] High-performance n-type organic thermoelectrics enabled by modulating cyano-functionalized polythiophene backbones
    Wang, Junwei
    Ma, Suxiang
    Jeong, Sang Young
    Yang, Wanli
    Li, Jianfeng
    Han, Young Woo
    Feng, Kui
    Guo, Xugang
    FARADAY DISCUSSIONS, 2024, 250 (00) : 335 - 347
  • [3] Cyano-Functionalized Fused Bithiophene Imide DimerBased n-Type Polymers for High-Performance Organic Thermoelectrics
    Feng, Kui
    Yang, Wanli
    Jeong, Sang Young
    Ma, Suxiang
    Li, Yongchun
    Wang, Junwei
    Wang, Yimei
    Woo, Han Young
    Chan, Paddy Kwok Leung
    Wang, Gang
    Guo, Xugang
    Zhu, Meifang
    ADVANCED MATERIALS, 2023, 35 (31)
  • [4] Polythiophenes for High-Performance N-type Organic Electrochemical Transistors
    Zhang, Chan
    Zheng, Yuting
    Li, Yanru
    Xue, Zhongyuan
    Zhu, Xiuyuan
    Chen, Jiawei
    Ma, Jianeng
    Zhang, Zhi
    Zhong, Hongliang
    Yue, Wan
    Lei, Ting
    Fei, Zhuping
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [5] Solvent Engineering for High-Performance n-Type Organic Electrochemical Transistors
    Savva, Achilleas
    Ohayon, David
    Surgailis, Jokubas
    Paterson, Alexandra F.
    Hidalgo, Tania C.
    Chen, Xingxing
    Maria, Iuliana P.
    Paulsen, Bryan D.
    Petty, Anthony J., II
    Rivnay, Jonathan
    McCulloch, Iain
    Inal, Sahika
    ADVANCED ELECTRONIC MATERIALS, 2019, 5 (08)
  • [6] Complementary Logic Circuits Based on High-Performance n-Type Organic Electrochemical Transistors
    Sun, Hengda
    Vagin, Mikhail
    Wang, Suhao
    Crispin, Xavier
    Forchheimer, Robert
    Berggren, Magnus
    Fabiano, Simone
    ADVANCED MATERIALS, 2018, 30 (09)
  • [7] A High-Mobility n-Type Noncovalently-Fused-Ring Polymer for High-Performance Organic Thermoelectrics
    Shen, Tao
    Liu, Di
    Zhang, Jianqi
    Wei, Zhixiang
    Wang, Yang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (35)
  • [8] High-Performance n-Type Organic Electrochemical Transistors Enabled by Aqueous Solution Processing of Amphiphilicity-Driven Polymer Assembly
    Jeong, Dahyun
    Jo, Il-Young
    Lee, Seungjin
    Kim, Ji Hwan
    Kim, Youngseok
    Kim, Donguk
    Reynolds, John R.
    Yoon, Myung-Han
    Kim, Bumjoon J.
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (16)
  • [9] High-Performance n-Type Organic Thermoelectrics Enabled by Synergistically Achieving High Electron Mobility and Doping Efficiency
    Feng, Kui
    Wang, Junwei
    Jeong, Sang Young
    Yang, Wanli
    Li, Jianfeng
    Woo, Han Young
    Guo, Xugang
    ADVANCED SCIENCE, 2023, 10 (29)
  • [10] n-Type Organic Electrochemical Transistors with High Transconductance and Stability
    Wang, Yazhou
    Zhu, Genming
    Zeglio, Erica
    Castillo, Tania Cecilia Hidalgo
    Haseena, Sheik
    Ravva, Mahesh Kumar
    Cong, Shengyu
    Chen, Junxin
    Lan, Liuyuan
    Li, Zhengke
    Herland, Anna
    McCulloch, Iain
    Inal, Sahika
    Yue, Wan
    CHEMISTRY OF MATERIALS, 2023, 35 (02) : 405 - 415