Regularity of a free boundary in parabolic potential theory

被引:64
作者
Caffarelli, L [1 ]
Petrosyan, A
Shahgholian, H
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
[2] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
free boundary problems; Stefan problem; regularity; global solutions; monotonicity formulas;
D O I
10.1090/S0894-0347-04-00466-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:827 / 869
页数:43
相关论文
共 12 条
[1]   VARIATIONAL-PROBLEMS WITH 2 PHASES AND THEIR FREE BOUNDARIES [J].
ALT, HW ;
CAFFARELLI, LA ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :431-461
[2]   Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems [J].
Athanasopoulos, I ;
Caffarelli, L ;
Salsa, S .
ANNALS OF MATHEMATICS, 1996, 143 (03) :413-434
[3]   Gradient estimates for variable coefficient parabolic equations and singular perturbation problems [J].
Caffarelli, LA ;
Kenig, CE .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (02) :391-439
[4]   The obstacle problem revisited [J].
Caffarelli, LA .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (4-5) :383-402
[5]   Regularity of a free boundary with application to the Pompeiu problem [J].
Caffarelli, LA ;
Karp, L ;
Shahgholian, H .
ANNALS OF MATHEMATICS, 2000, 151 (01) :269-292
[6]  
CAFFARELLI LA, 1993, BOUNDARY VALUE PROBL, P53
[7]  
FRIEDMAN A., 1964, Partial differential equations of parabolic type
[8]  
Friedman A., 1988, VARIATIONAL PRINCIPL
[9]   SMOOTHNESS OF FREE BOUNDARY IN ONE PHASE STEFAN PROBLEM [J].
KINDERLEHRER, D ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (03) :257-282
[10]  
Kinderlehrer D., 1977, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V4, P373